
1. Purpose and Intended Audience
The Portainer Validated Design Reference Architecture contains a validated model of the

Portainer Stack and provides a detailed design of each Portainer component of the whole

stack.

This document is intended for technical audiences; architects, engineers and

administrators to understand the common architectural scenarios across different

platforms, including a detailed design of each component of the Portainer stack.

2. Architecture Overview
Portainer is a centralized container management platform that accelerates container

adoption, reduces operational complexity and addresses the challenges of running

containers in Docker, Docker Swarm, Podman, and Kubernetes. It helps you get started

and accelerate intelligent adoption with an innovative and self-service management

portal.

Portainer has two main components to understand; Server Core and Agent:

The Server Core was designed to serve Portainer administrators and users to
interact with the web application (UI and API) to set up, manage, and consume the

Portainer Reference Architecture

underlying container orchestration platforms.

The Agent was designed for users running multiple orchestration platforms to avoid
running various Portainer Server core instances. Instead, run an agent in each
container orchestration platform, and manage them from a single Portainer server
core instance:

The Agent comes in two modes; standard and edge. The standard mode is
intended for the datacenter usage, whereas the edge mode is generally for
edge devices in the IoT or IIoT context:

In standard deployments, the central Portainer Server instance and any
environments it manages are assumed to be on the same network where
the Portainer Server can securely communicate with Portainer Agents.

With the Edge Agent, unlike the standard mode, the remote environments
access the Portainer Server, i.e. Agents → Portainer. This communication
is performed over an encrypted TLS tunnel. This is important in Internet-
connected configurations where there is no desire to expose the
Portainer Agent to the Internet.

The Portainer server core and Agent run as lightweight containers on any containerized

infrastructure. Ideally, the Agent will be deployed in each container orchestration and

managed by the centralized Portainer Server container.

For the overall architecture design, the highly recommended approach for hosting

Portainer in your environment is to run the Portainer server core in a dedicated

environment, a management cluster outside your workloads clusters and manage them

via Agents. Refer to the diagram below:

Recommended Reference Architecture for Portainer

The benefits include but are not limited to the following:

It becomes easier to protect your management cluster by applying hardened
security rules to where Portainer is hosted.

Portainer runs outside your workload clusters; hence a workload cluster outage
does not impact the availability of the Portainer instance, and vice versa.

Scaling in and out of the number of container runtime environments gets easier.

Troubleshooting and maintenance get easier. For instance, apply the same RBAC
rules to users and teams in various environments from a single Portainer instance.

With these details in mind, there are two primary solutions provided by Portainer;

Datacenter and Edge Computing. It is absolutely fine to run a single Portainer instance to

serve both; however, separating those two use cases is highly recommended. More

details will be outlined in the next two sections.

2.1 Datacenter
The Portainer for Datacenter is the solution recommended for users to deploy Portainer

to manage container runtime clusters within their own cloud or on-premises datacenters,

i.e. in the private network. In this case, the deployment of Portainer and Agents will be

located in its own private network. The Portainer instance must be able to communicate

with all Agents on port 9001 (the port is customizable if required). If Agent does not run

on a private network where the Portainer resides, there will likely be a firewall between

the two. Ensure to implement an appropriate route and configure the firewall with the

right security rules to allow this traffic.

The following diagram depicts how Portainer and Agents should be deployed in your

datacenter environment:

Datacenter Architecture with Agent

On the other hand, there will be use cases where:

There are network and/or security requirements where Agents cannot be published
for a Portainer instance to connect to.

Users want Agents to connect to Portainer, not the other way around, for easier
infrastructure maintenance.

In this case, even though the purpose of the Edge Agent type was designed for Edge

devices, running the Edge Agent type for the Datacenter context is completely feasible.

However, Portainer must be published to accept ports 9443 and 8000 (customizable

ports) for them, i.e. Agents → Portainer.

The following diagram depicts how Portainer and Edge Agents should be deployed in

your datacenter environment:

Datacenter Architecture with Edge Agent

2.2 Edge Computing
The Portainer for Edge is the solution recommended for users to deploy and configure

Portainer to allow edge computing devices, e.g. IoT devices, to establish connections

between the two.

There are two types of Edge Agents for Portainer; Standard and Async:

The Standard mode was designed for edge devices that must be managed in real-
time by the Portainer Server, where it provides the ability to connect to the remote
Edge Agent through a tunnel that is established on-demand from the Edge Agent to
the Portainer Server

More details about how Portainer, Agent and Edge Agent are
secured can be found in the later section, How Portainer Works
with Agents.

The Async mode has been developed to use very small amounts of data and, as
such, is suitable for environments with limited or intermittent connectivity and
connections with limited data caps, such as a satellite network. To reduce data
usage, the use of the tunnel is not available. Instead, Portainer allows users to
browse snapshots of the remote environment, allowing users to see the state of the
Edge Agent's environment based on a recent state capture sent to the Portainer
Server.

In terms of the architecture for edge computing, the high-level architecture is very similar

to the datacenter version, but the differences will be:

A firewall will be leveraged to publicly host Portainer’s HTTPS API (port 9443) and
HTTP WebSocket Tunnel (port 8000) endpoints.

The Async Edge agent type requires only the HTTPS API endpoint (port 9443).

The following diagram depicts how Portainer and Edge Agents should be deployed in

your environment:

Edge Computing Architecture with Edge Agent

More details about how Portainer and Edge Agent are secured can
be found in the later section, How Portainer Works with Agents.

3. Portainer Components
The Portainer Components section will dive into more technical details of the following

components:

How Portainer Works in Detail.

How Portainer Works with Agents (Standard vs Edge) in Detail.

How Portainer Works with Swarm in Detail.

How Portainer Works with Kubernetes in Detail.

3.1 How Portainer Works in Detail
The Portainer server core was built as a lightweight container image to run on standard

OCI-compatible container runtime environments. It is comprised of three main

components:

A Single Page Application (SPA) based Web Application with the following to serve
the front-end UI experience:

AngularJS and React:

In the process of migrating AngularJS to React.

A set of assets (CSS, HTML and JavaScript).

Core API is written in Golang to provide REST APIs for backend operations.

Two BoltDB (a lightweight embedded key/value store) instances:

Main Portainer data:

Portainer Settings, Backup, Tunnel Server details, and Version.

Registries; Docker Hub, AWS ECR, Azure ACR, and so on.

Users, Teams, and Team Memberships.

Edge Groups, Stacks, and Jobs.

Environment details, Groups, Tags, and Relations.

Application Stacks and Webhooks.

Custom Templates.

Audit and Activity logs.

Portainer also interacts with other external services to support managing container

runtime environments:

Microsoft Active Directory, LDAP and OAuth providers; Azure AD, GitHub, Google…
etc.

Backup Storage Provider; AWS S3 bucket or an S3 gateway.

Git Repository, such as GitHub or GitLab.

Container Registry; DockerHub, ACR, ECR, Quay, ProGet, GitLab, GitHub… etc.

The following binaries are used to establish connections to the underlying container
orchestrations over proxy:

docker Client to execute Docker APIs not supported by the SDK. For instance,
Docker Stack management.

docker-compose to support Docker Compose activities.

kubectl and helm to support interacting with Kubernetes clusters.

eksctl and awsAuth to bootstrap an EKS cluster in AWS, part of Portainer’s
Kubernetes as a Service (KaaS) feature.

The following diagram depicts the components described above:

How Portainer Works in Detail

3.2 How Portainer Works with Agents

3.2.1 Overview
As reviewed in the earlier section, the Portainer Agent works in two modes; Standard or

Edge.

This section will dive deep into how Portainer works with Agent in different modes,

including their core behaviors:

Portainer interacts with the underlying container runtime where Agent runs as an
API proxy:

Standalone: for instance, to list containers on a Docker Engine, Portainer will
trigger a native Docker GET API call against /containers/json.

Swarm: different to Standalone that it executes aggregation, manager, and
worker requests. Refer to the How Portainer Works with Agent on Swarm
section for more details.

Kubernetes: the difference from the Swarm is that Kubernetes API Server
handles all the operations requiring aggregation, manager, and worker
requests. For instance, the API call /api/v1/pods is triggered in listing pods from
all Kubernetes nodes without requiring aggregation requests like Swarm. Refer
to the How Portainer Works with Agent on Kubernetes section for more details.

The communication between Portainer and Agent for both types is protected by
HTTPS:

For Standard agents, the Agent generates a certificate for exposing its API
server (the use of a custom SSL certificate is not supported):

Interactive API calls such as docker exec or docker logs are achieved
using a protocol called WebSocket. Portainer uses a technique called
Signature Verification to secure these communications.

For Edge agents:

The API is not exposed over HTTPS anymore. Instead, it connects back to
the Portainer instance over HTTPS.

Once the header X-PortainerAgent-EdgeID is presented to Portainer, and
the device with the identical EDGE ID is trusted by the admin, the ongoing
communications will work. This means that there is no authentication in
place. Hence, Portainer strongly recommends enabling mTLS to secure
connectivity in production usage, especially in the IoT / IIoT contexts.

Establishing an interactive session for the standard edge mode differs from the
standard agent. It instead creates a reverse SSH tunnel over WebSocket on port
8000:

Due to its nature, the edge async mode has no interactive session capability.
For instance, IoT devices in the wild with limited internet access over the
satellite. In this case, the Portainer Server schedules command operations
based on the command frequency to reduce network usage as much as
possible. For example, when a user deploys an Edge Stack to an Edge Group
with Async devices, if the Command frequency is set to 60 minutes, the Agent
will only send the command operation to the Edge Group when it hits 60
minutes. The default is set to 1 minute.

For both Standard and Async Edge modes, there are additional operations Portainer
triggers; Ping, Snapshot, and Commands. For the Standard mode, a Snapshot is

taken after closing the interactive session, where the two’s schedules are set by the
Poll frequency. Whereas the ping, snapshot, and command frequencies can be set
separately for the Async mode:

Edge Stacks and Edge Jobs work the same for Standard and Async Edge
agents based on the command frequency set by Portainer.

The agent contains binaries such as docker and kubectl to support certain API
operations that cannot be achieved natively using the SDKs.

The following diagram depicts the components described above:

How Portainer Works with Agents

3.2.2 Standard Agent

3.2.2.1 Startup

The standard agent works as a proxy to communicate with the underlying container

runtime via Docker API (both Standalone and Swarm) or the Kubernetes API Server

(Swarm will talk with other agents running as a global mode deployment).

First, the Agent will start an API server on port 9001 (the port is customizable). The Agent

will then determine which container runtime the environment is; Podman, Kubernetes, or

Docker Engine. If Docker, it will check if it is running a Swarm mode by checking the

node’s role (docker node inspect). The agent API server’s advertised address will be

decided by the Portainer Server’s pod or container IP address.

The TLS certificate for exposing its API service gets generated automatically. The use of

the mTLS is not configurable for the Standard Agent.

3.2.2.2 Docker API compliance
When communicating with a Portainer Agent instead of using the Docker API directly, the

only difference is the additional X-PortainerAgent-Target header to each request is added

to execute actions against a specific node in the Swarm cluster.

The fact that the agent's final proxy target is always the Docker API means that we keep

the Docker original response format. The only difference in the response is that the agent

will automatically add the Portainer-Agent header to each response using the version of

the Portainer agent as a value.

3.2.2.3 Agent specific API
The agent exposes the following endpoints:

/v2/agents (GET): List all the available agents in the cluster.

/v2/browse/ls (GET): List the files available under a specific path on the filesystem.

/v2/browse/get (GET): Retrieve a file available under a specific path on the
filesystem.

/v2/browse/delete (DELETE): Delete an existing file under a specific path on the
filesystem.

/v2/browse/rename (PUT): Rename an existing file under a specific path on the
filesystem.

/v2/browse/put (POST): Upload a file under a specific path on the filesystem.

/v2/host/info (GET): Get information about the underlying host system.

/v2/ping (GET): Returns a 204. A public endpoint that does not require any form of
authentication.

/v2/key (GET): Returns the Edge key associated with the agent, only available when
the agent is started in the Edge mode.

/v2/key (POST): Set the Edge key on this agent only available when the agent is
started in Edge mode.

/v2/websocket/attach (GET): WebSocket attach endpoint (for container console
usage).

/v2/websocket/exec (GET): WebSocket exec endpoint (for container console usage).

/v2/kubernetes (POST): Kubernetes deploy endpoint (equivalent to kubectl apply -f).

/v2/dockerhub (POST): Docker Hub endpoint for checking the status of its token and
rate limits.

3.2.2.4 Agent API version
The agent API version is exposed via the Portainer-Agent-API-Version in each response

of the agent. For instance:

Note: The /v2/browse/* endpoints can manage a filesystem. By
default, it allows manipulation of files in Docker volumes (available
under /var/run/docker/volumes when bind-mounted in the agent
container).

3.2.3 Edge Agent

3.2.3.1 Registration
To start an agent in Edge mode, the EDGE=1 environment variable must be set.

Upon startup, the agent will try to retrieve an existing Edge key in the following order:

From the environment variables via the EDGE_KEY environment variable.

From the filesystem (see the Edge key section below for more information about key
persistence on disk).

From the cluster (if joining an existing Edge agent cluster).

If there is no Edge key provided, the agent will start an HTTP server exposing a UI for

users to to associate an Edge key. The UI server will shut down after a valid key is

provided.

For security reasons, identical to the Portainer server, the Edge server UI will shut down

after 15 minutes if no key has been specified. The agent will require a restart to access

the Edge UI again.

The final process is to onboard it to Portainer, and there are two scenarios:

HTTP/2 200

< content-type: application/json

< portainer-agent: 2.18.2

< portainer-agent-api-version: 2

< portainer-agent-platform: 2

Manual environment creation:

This is a method to on-board edge agents one-by-one. Creation of an
environment will show the steps on how to deploy the edge agent as a
container based on the container runtime type:

Auto-onboarding:

In this case, the device will be in the waiting room for the administrator to mark
it as trusted, and the on-boarding will be finished. This is the feature to be
considered for on-boarding a large amount of edge devices:

3.2.3.2 Edge key
The agent uses the Edge key to connect to a specific Portainer instance. It is encoded

using base64 format (without the padding characters) and contains the following

information:

Portainer instance API URL.

Portainer instance tunnel server address.

Portainer instance tunnel server fingerprint.

Endpoint (Edge Device) identifier.

This information is represented in the following format before encoding (single string

using the | character as a separator):

portainer_instance_url|tunnel_server_addr|tunnel_server_fingerprint|endpoin

The Edge key associated to an agent will be persisted on disk after association under

/data/agent_edge_key.

3.2.3.3 Reverse tunnel
The reverse tunnel is established by the agent in the Standard mode only. The

permissions associated to the credentials are set on the Portainer instance, where the

credentials are valid for a management session, and can only be used to create a reverse

tunnel on a specific port (the one that is specified in the poll response).

The agent will monitor the usage of the tunnel. The tunnel will be closed in any of the

following cases:

1. The status of the tunnel specified in the poll response is equal to IDLE.

2. If no activity has been registered on the tunnel (no requests executed against the
agent API) after a specific amount of time (can be configured via
EDGE_INACTIVITY_TIMEOUT, default to 5 minutes).

3.2.3.4 Polling
After associating an Edge key to an Edge Agent, the agent will start polling the

associated Portainer instance. Defaults to 5 seconds frequency.

It will use the Portainer instance API URL and the endpoint identifier available in the Edge

key to build the poll request URL: http(s)://API_URL/api/endpoints/ENDPOINT_ID/status

The response of the poll request contains the following information:

Tunnel status.

Poll frequency.

Tunnel port.

Encrypted credentials.

Schedules.

The tunnel status property can take one of the following values: IDLE, REQUIRED, ACTIVE.

When this property is set to REQUIRED, the agent will create a reverse tunnel to the

Portainer instance using the port specified in the response as well as the credentials.

Each poll request sent to the Portainer instance contains the X-PortainerAgent-

EdgeID header (with the value set to the Edge ID associated to the agent). This is used

by the Portainer instance to associate an Edge ID to an endpoint so that an agent won't

be able to poll information and join an Edge cluster by re-using an existing key without

knowing the Edge ID.

To allow for pre-staged environments, this Edge ID is associated to an endpoint by

Portainer after receiving the first poll request from an agent.

3.2.3.5 Snapshot
The following details are captured by a Snapshot in the Edge mode:

docker info.

docker containers.

docker images.

docker volumes.

docker networks.

Snapshot version.

Though, the process of taking a snapshot differs between Standard and Async:

For the Standard mode, a snapshot is only taken when user interacts with the
device:

Live connect to a standard edge agent.

Disconnect from it after the usage.

After 5 mins, the tunnel will become idle.

Right before closing the tunnel, a snapshot will be taken.

For the Async mode, a snapshot is taken based on the frequency set by the
Portainer server.

3.2.3.6 Command APIs
Command APIs were specifically designed for Edge Stacks and Edge Jobs. The idea is to

send a set of instructions to the Edge Agents to execute these commands. The way

Standard and Async mode works for Command APIs is different:

Standard

The instructions are executed by the Portainer server after establishing the reverse
tunnel to the Edge Device on port 8000.

Async

Only grabs the instructions from the Portainer server based on the command
frequency, and execute it locally at the Edge Device level.

3.2.3.7 API server
When deployed in Edge mode, the agent API is not exposed over HTTPS anymore (see

Using the agent non Edge section below) because we're using SSH to setup an encrypted

tunnel. In order to avoid potential security issues with agent deployment exposing the API

port on their host, the agent won't expose the API server under 0.0.0.0. Instead, it will

expose the API server on the same IP address that is used to advertise the cluster

(usually, the container IP in the overlay network).

This means that only a container deployed in the same overlay network as the agent will

be able to query it.

3.2 How Portainer Works with Agent on Swarm
For Swarm, deploying agents on each node is mandatory (global mode) where all agents

form a cluster using the serf library to communicate each other over an overlay network.

Refer to the following requirements for an overlay network:

Component Requirements

Firewall The following ports must be available. On some systems,

these ports are open by default:

- Port 2377 TCP for communication with and between

manager nodes

- Port 7946 TCP/UDP for overlay network node discovery

- Port 4789 UDP (configurable) for overlay network traffic

Network Docker Swarm’s default network MTU is 1500, and if the

underlying network has a lower MTU than this, then any

containers on the overlay network will fail to communicate

with each other.

In case of the MTU size is less than 1500, recreate the

primary ingress overlay network with MTU specified:

Component Requirements

docker network rm ingress && docker network create -d

overlay --ingress --opt

com.docker.network.driver.mtu=1450 ingress

Network For VMware

Communication issues over the swarm node routing mesh

might occur when running Docker Swarm under VMware.

This is due to UDP packets being dropped by the source

node. Disabling checksum offloading appears to resolve

this issue.

Run the following on all the VMs in your cluster:

ethtool -K [network] tx-checksum-ip-generic off

(Replace [network] with the name of your network

adapter)

Since there are multiple agents in the cluster, in order to proxy the requests to the other

agents inside the cluster, it introduces a header called X-PortainerAgent-Target which can

have the name of any node in the cluster as a value. When this header is specified, the

Portainer agent receiving the request will extract its value, retrieve the agent's address

located on the node specified using this header value and proxy the request to it. If no

header X-PortainerAgent-Target is present, Portainer assumes that the agent receiving

the request is the target of the request, and it will be proxied to the local Docker API.

Now, this is called Worker requests.

There are requests specifically marked to be executed against a manager node inside the

cluster, and this is called Manager requests. The agent will inspect any requests and

search for the X-PortainerAgent-ManagerOperation header and if it is found, then the

agent will proxy that request to an agent located on any manager node. For instance,

/services/**, /tasks/**, /nodes/**, where all the Docker API operations can only be

executed on a Swarm manager node. This means that you can execute these requests

against any agent in the cluster, and they will be proxied to an agent (and to the

associated Docker API) located on a Swarm manager node.

The X-PortainerAgent-ManagerOperation header was introduced to support managing

Docker Swarm Stacks using the Docker binary. It MUST always target a manager node

when executing any command.

Finally, if no X-PortainerAgent-Target is found, it will automatically execute the request

against each node in the cluster in a concurrent way. Behind the scenes, it retrieves the

IP address of each node, create a copy of the request, decorate each request with the X-

PortainerAgent-Target header and aggregate the response of each request into a single

one (reproducing the Docker API response format). This is called Aggregation Requests:

GET /containers/json

GET /images/json

GET /volumes

GET /networks

The agent handles these requests using the same header mechanism.

The following diagram depicts the components described above:

How Portainer Works with Swarm

3.3 How Portainer Works with Agent on Kubernetes
Unlike Docker Swarm, Kubernetes has a control plane object called Kubernetes API

Server, which can handle any API operations to manage the underlying Kubernetes

cluster. For instance, listing all containers can be handled where aggregation requests are

not required. But, in order to execute these API requests, it must go through Kubernetes

built-in authentication and authorisation process, which is called Kubernetes RBAC.

Due to the nature of Portainer requiring full access to the cluster, as part of the

deployment via Kubernetes manifests or Helm, it creates a Service Account called

portainer-sa-clusteradmin and bind it with the cluster-admin ClusterRole. This gets used

by any administrators within Portainer to manage the underlying cluster. Now, this is

called Cluster Requests that allows privileged operations by using the token of this

service account to interact with the Kubernetes API server kubernetes.default.svc.

However, for standard users, the process is slightly different. Portainer has the roles pre-

built for Kubernetes users; Environment Administrator, Operator, Helpdesk, Standard

User, and Read-only User.

For these users to be able to communicate with the Kubernetes cluster, Portainer creates

a Kubernetes Service Account, and Roles/ClusterRoles and its

RoleBindings/ClusterRoleBindings behind the scenes. Be noted that these objects

creations are done only when the user logs in and interacts with the Kubernetes

environment. This is to ensure that either the role or ClusterRole is always consistent, i.e.

users won’t be able to override them manually. For example, for a Read-only user,

Portainer creates does the following in order:

1. Creates a ServiceAccount - portainer-sa-user-${UUID}-${Environment_ID}

2. Creates a ClusterRole called portainer-view

3. Bind the ClusterRole called portainer-crb-${UUID}-portainer-view with the
ServiceAccount in step 1

Now, this is called User Requests, where the user only has access to the Kubernetes with

get and list operations. The details are below:

rules:

- apiGroups:

 - ""

 resources:

 - namespaces

 - nodes

 verbs:

 - list

 - get

- apiGroups:

 - storage.k8s.io

 resources:

 - storageclasses

 verbs:

 - list

- apiGroups:

 - metrics.k8s.io

 resources:

 - namespaces

 - pods

 - nodes

The following diagram depicts the components described above:

How Portainer Works with Kubernetes

 verbs:

 - list

 - get

- apiGroups:

 - networking.k8s.io

 resources:

 - ingressclasses

 verbs:

 - list

