
Learn how you can use Portainer to deploy your applications on Docker and Docker
Swarm environments, including an introduction to containerization and real world
example deployments.

WORKING WITH CONTAINERS

WORKING WITH VOLUMES

WORKING WITH STACKS

Introduc�on

Anatomy of a container

Deploy your first container

Edi�ng your container

Volume concepts

Crea�ng a named volume

Anatomy of a stack

Deploying on Docker with Portainer

SWARM AND SERVICES

SUMMARY

Deploy a stack

What is a Swarm?

Anatomy of a service

Deploy a service

Summary

Welcome!
Thank you for starting the Deploying on Docker with Portainer training course!

This course is intended as an introduction to the concepts of deploying on Docker

environments, and will cover the following topics:

Lesson 1 of 12

Introduction

Containers - what they are, how to create them, and how to edit
them once created.

1

Volumes - what a volume is, the different types of volumes, how to

create new volumes and how to attach them to containers.
2

Stacks - the concepts behind stacks and how they can be used to
build powerful, repeatable and reliable deployments.

3

Docker Swarm - what Swarm is, the differences between Docker

Swarm and Docker Standalone, and use cases for Swarm.
4

Swarm services - how a service differs from a container, how to
spin one up and how to scale one after creation.

5

By the end of this course you should have a good understanding of deploying on Docker

environments. We won't cover every piece of functionality here, but this should get you

confident with the important deployment concepts and prepare you for more advanced

topics.

So, let's get started!

Anatomy of a container
Before we start working with containers, we first need to understand what containers are

and how they fit into the Docker ecosystem.

What is a container?
In its simplest form, a container is a unit of software designed to perform a task. That

task might be simple (serve a static web page) or complex (machine learning) or

somewhere in between. Containers run independently, but can communicate with other

containers and non-container resources if required.

When we talk about containers, we're generally talking about the containerized format

popularized by Docker, which has since become the industry standard used by a

multitude of environments.

Think of an assembly line manufacturing cars. In this scenario, the container is an

assembly robot responsible for one part of the car-assembly process, but it works with

other robots (containers) to build the car.

Lesson 2 of 12

Anatomy of a container

Containers can be thought of like robots in an assembly line: dedicated to one task.

Each robot in the assembly line has a set of instructions for the task it needs to perform.

Robots might be physically identical but they perform different jobs based on the

instructions they're given. When it comes to containers, those instructions take the form

of a container image. It is the image that tells the container to be a web server, a

database or something else.

Is a container like a virtual machine?
In some respects, containers and VMs have a lot in common. But they have one key

difference: virtual machines virtualize the hardware of the underlying system, while

containers virtualize the operating system.

Containers are designed to be idempotent. You should be able to destroy a container and

create a replacement without any data loss. This is achieved by providing the basics of

the configuration via the image, and any customizations through deployment options

such as environment variables. If a container needs to store something persistently, for

example a database, a volume should be attached to the container to provide this

persistency without sacrificing the idempotency of the container itself.

Idempotency makes containers more flexible and portable than virtual machines. If we go

back to the assembly line metaphor, imagine moving your robot to a new assembly line

that builds a different model of car. The physical robot (container) can still do the job, but

it will need a new set of instructions (container image). A virtual machine would need to

destroy and rebuild the entire factory to change the model of car you're building.

Container components
As described above, a container is the running result of an image deployed onto an

orchestrator (such as Docker). Containers by themselves are idempotent, so if they need

persistent storage we would attach a volume. Access to the container (both externally

and internally from other containers) is provided by a network configured on the

orchestrator. And all of this can be grouped together, deployed and managed as one in a

stack.

The components that can make up a containerized deployment.

We will cover each of these concepts and more in further detail in future lessons. For now

though, let's dive right in and create our first container.

Now that we understand the concepts behind a container, let's deploy one on our

environment using Portainer. For this example, we will:

START

Lesson 3 of 12

Deploy your first container

Create a container running nginx1

Configure the container to listen on a specific port2

Make a directory on our host accessible within the container3

1

Preparation
On your host environment, create a directory called /mnt/nginx (or use an alternative

path that suits your environment). Inside that directory, create an index.html file with

the following content:

Make a note of the directory name you used here (if you changed it) as you'll need it

later.

CONTINUE

<html>

 <head>

 <title>Welcome to nginx!</title>

 </head>

 <body>

 <h1>Welcome to your nginx container!</h1>

 <p>If you can read this, your nginx container was created successfu

 </body>

</html>

2

Create your container
In Portainer select your environment then choose Containers from the left hand menu,

then click Add container.

The first thing you'll need is a name for your container. This can be whatever you want it

to be, as long as it's unique on the environment. For this example, we'll call our container

nginx.

As we've discussed, a container is built from an image, so we now need to tell Portainer

which image we want to use and which registry that image is coming from. Since there

are official nginx images on Docker Hub, we can use Docker Hub as the registry.

For the image, we'll use nginx with the latest tag, which you define using the image:tag

format - so for this example, nginx:latest:

At this point you could deploy the container, but you wouldn't be able to access the nginx

server with your web browser. To allow access, we need to publish a port that will be

available externally and route to the internal port of the nginx server running in the

container we're creating.

In the Network ports configuration section, click the publish a new network port button

next to the Manual network port publishing label. A couple of new fields will appear,

where we define the host port and container port as well as the protocol.

The host port is the port that will be available externally, and the container port is the

internal port within the container that the host port will be routed to. The host port must

be unused by other services on your host. The container port will be defined by the

particular services configured in your image - in the case of nginx, the nginx service

listens on port 80 by default.

For this example, let's publish this container on port 3002 by setting the host field to

3002. If this port is already used on your environment, feel free to change it to suit. The

container port, as mentioned above, should be 80. The protocol should be kept at TCP.

Finally, we want some content for our nginx server. We can use the directory we created

earlier to contain the website files we want to make available through our nginx

container. To make this directory available within the container, we need to create what's

called a bind mount.

A bind mount is one of the two primary volume types (the other being named volumes,

which we'll cover in a later lesson) and is essentially a way of making a directory on the

host environment available within a container at a specified path. Containers have their

own self-contained file systems which only exist while they are running, so anything you

want available in the container persistently must be mounted in via a bind mount or

named volume.

To add a bind mount to this container's configuration, scroll down to the Advanced

container settings section and select the Volumes tab. From this tab, click map

additional volume. Some new fields will appear which we'll now complete.

Since we're adding a bind mount, we first need to click the Bind button to change the

volume field into the host field. The container field is the path within the container where

you'd like your mounted directory to appear, and the host field is the path on your host

that you'd like to mount in your container. Since the default webroot path for the nginx

image is /usr/share/nginx/html, we enter that in the container field. For the host

field, enter /mnt/nginx (or the path you used above) as that's the directory we want

mounted in our container. For this example, we'll leave the write permissions on the

default of Writable.

This should be everything we need to get our nginx container up and running. Click the

Deploy the container button to create the container.

Portainer will now take your settings and deploy the container on your environment. Once

it completes you'll see a notification in the top right of the window and be taken back to

the list of containers.

You should see the nginx container in the list, with a running state to indicate it is active.

You'll also see the image name and tag we used and the port we published.

Let's test our deployment. In a new browser tab, go to the IP address of your

environment with the port we published. For example, if your environment's IP was

192.168.1.1 and you used the default port of 3002, go to:

If all has gone well, you should see the contents of the index.html page we created

earlier.

CONTINUE

http://192.168.1.1:3002

3

If you have configured your environment's public IP address, you
can also click on the published port in the container list to open
it in a browser.

Summary
In this lesson we've covered the creation of a container with Portainer, including:

We've learned how to deploy a container, so now let's learn how to edit a deployed

container with Portainer.

Naming the container

Selecting an image repository and entering an image name and tag

Publishing a port

Bind mounting a directory from the host

Now that you have deployed your container, you should be up and running. But what if

you want to make changes to the container's configuration?

Let's say you need to change the image tag you're using on the container. In our previous

lesson we created a container using the nginx:latest image and tag, which will have

pulled the most recent version of the image to use. Let's imagine however that we need

to ensure the container runs on a specific version of nginx.

Let's also imagine that we need to change the port the container is published on (perhaps

you want to run something else on the port it currently uses). We can make both of these

changes to the container at the same time and redeploy it with the updates, all through

the Portainer interface.

START

Preparation

Lesson 4 of 12

Editing your container

1

This lesson assumes you have a nginx container deployed as per the previous lesson. If

you don't have this container, you can adjust these instructions to suit your setup.

CONTINUE

Edit your container
First, go to the list of containers on your environment by clicking Containers in the left

menu. You should see a list of the containers deployed on the environment.

From here, click the nginx container we created earlier. This will take you to the details

page for the container.

2

If you scroll down to the Container details section, you can see information about the

container including the image you're using as well as the port configuration, both of which

we'll be adjusting now.

Scroll back up to the top of the page and click the Duplicate/Edit button to start editing.

This page should look familiar, as it is essentially the same as the container creation

page.

First, let's adjust the image tag we're using. For this example, instead of nginx:latest

we'll set this to nginx:1.23 to specify we want to use version 1.23 of nginx specifically,

instead of what's tagged as latest.

In the Image box, change the entry to read nginx:1.23.

Now let's adjust the published port. In the Network ports configuration section you

should see the port we published earlier - 3002 - listed as routing to port 80. For this

example, let's change the host port to 3005 instead of 3002. Enter 3005 in the host box,

replacing the current entry. We don't need to change the container port, as nginx is still

listening internally on port 80.

Check that your settings are right then when you're ready click Deploy the container.

You'll be asked to confirm your action as the container already exists, which we expect,

so click Replace.

The deployment will then begin, removing the old container and creating a new one with

the new settings to replace it. Once this process completes you'll be taken back to the

container list.

From here we can see that the image for the nginx container is now set to nginx:1.23

and the published port is now 3005 instead of 3002.

You can confirm the new published port is working by accessing it in a browser:

http://192.168.1.1:3005

Replace 192.168.1.1 with the IP address of your environment.

CONTINUE

Summary
In this lesson we have learned how to:

3

Edit an existing container

Change the image and/or tag that a container uses

Modify the published port of a container

In the next lesson we'll talk about the concept of volumes, which we briefly touched on

earlier.

In this lesson we'll learn about volumes in Docker. We'll cover:

START

What is a volume?
A volume is a way for a container to be given persistent storage for files that are outside

of the image itself but need to remain through restarts of the container.

Lesson 5 of 12

Volume concepts

What a volume is in Docker terms1

The main two types of volumes: named volumes and bind mounts.2

1

Our application component diagram, with the volume component highlighted.

One of the best examples of where you'd need a volume is if you were hosting a website

with your container. The container would provide the web server software but not your

specific HTML / CSS / JS for your particular website. These site files would potentially

change often, but would need to be kept around if you needed to restart or upgrade the

container (for example, to deploy an updated version of the web server software). To

achieve this persistency, you would attach a volume to your web server container and

put your website files in that volume. The web server container would see this volume as

part of it's filesystem at the path you provide, and would be able to use it accordingly.

CONTINUE

Named volumes vs Bind mounts
There are two primary types of volumes available in Docker: named volumes and bind

mounts. Each type has it's own benefits and drawbacks, functioning in different ways

externally but both appearing in the same way to the container's internal file system.

Bind mounts
A bind mount is fairly straightforward - it is a way to mount a directory from the host

machine into your container. You simply define the directory on your host system (for

example, /mnt/nginx) and the path where you'd like it to appear within your container's

filesystem (for example, /user/share/nginx/html). That's it. If this example looks

familiar, that's because if you followed our deploying a container lesson you would have

already created a bind mount.

While simple, there are certain considerations you should keep in mind when using bind

mounts. Because you are mounting your host filesystem into your container, your

container has access to that filesystem. This could be a security issue if you're running an

insecure or malicious container image. A bind mount is also managed outside of the

Docker orchestrator, so you would need to ensure that the directory stays at that path,

has the right permissions, and isn't modified unexpectedly by other processes on the

host system.

Named volumes
Named volumes, often simply referred to as "volumes", are Docker's answer to persistent

storage. When you create a volume, Docker builds a virtual file system that can then be

attached to a container (or multiple containers) to serve as persistent storage. This virtual

2

file system, while existing on the host, is managed by Docker itself. As such, you're not

mounting the host filesystem directly into your container at all, unlike with a bind mount.

Once a volume has been created, you can mount it to a container by selecting the volume

and the path where you'd like it to appear within your container's filesystem (much like a

bind mount above). Because the volume is referenced by a name rather than a path, this

makes it more portable especially when you consider how different paths may work on

different OSes and deployments. You can even create and mount volumes as part of a

stack deployment alongside your containers to ensure portability.

There are of course cases where a volume might not make sense - for example, if you

had a directory with a large amount of files that you wanted to make available to other

services outside of your container, but in many situations using a named volume can

provide you with benefits that a bind mount cannot.

What about network volumes?
Docker also supports the mounting of network volumes (such as NFS or CIFS shares)

within a container, and these essentially work in a similar way to a bind mount in that you

provide the source path (and often in the case of a network mount the necessary access

credentials) and the path to mount within the container file system. Also much like bind

mounts, network volumes are managed outside of Docker so don't have the benefits of

named volumes.

CONTINUE

3

Summary
In this lesson we've learned:

Next, let's take that knowledge and use it to create a new named volume.

What a volume is

The two main types of volume

In the previous lesson we introduced the concepts of volumes in Docker. In this lesson

we'll take that knowledge and use it to create a named volume. We will:

START

Lesson 6 of 12

Creating a named volume

Learn the concepts of named volumes, and how they work on

Docker and Swarm environments.
1

Create a new named volume in our Docker environment.2

Attach our new volume to a container.3

Docker refers to named volumes as simply "volumes". We'll use
both terms interchangeably below.

Named volume concepts
Bind mounts, which we covered in the previous lesson when creating our first container,

are relatively straightforward to understand. They are simply making a directory on the

host server available within a container at a specified path. As such, a bind mount

requires a container to exist.

Named volumes however can and do exist without a container. You would generally

create a named volume independently from a container, or as part of a stack definition

(which we'll cover in a later lesson). Named volumes are managed by Docker itself, are

less dependent on the underlying host directory structure, and through the use of drivers

provide the ability to attach directly to storage on remote hosts, for example via NFS or

CIFS. And from a security perspective, having your persistent storage in a separately

managed system from your host environment helps to protect against malicious or

misconfigured containers from accessing the host file system.

A note for Docker Swarm users
One important point to note for Swarm environments is that Swarm itself does not

contain any functionality to replicate volumes and the data within across nodes. When

creating a volume on Swarm, you will need to specify the node on which that volume

resides. If you need persistent storage across Swarm nodes for your application, a third-

party storage system such as Ceph or GlusterFS is needed, which is outside the scope of

this course.

Now that we have a basic understanding of the idea behind named volumes, let's go

ahead and create one.

1

CONTINUE

Create a named volume
First, we'll need to select our Docker environment in Portainer. This can be either Docker

Standalone or Docker Swarm, and either a local environment or an Agent-managed

environment - either will work.

Once you have selected your environment, click Volumes in the left hand menu to list the

current volumes on your selected environment.

In my environment I don't have any volumes yet, so let's make one. To create a new

volume, click the Add volume button in the top right. This will take you to the Create

volume page.

2

Every named volume needs, well, a name - so let's provide that first. Volume names must

be unique to the host machine they are created on, and can only consist of alphanumeric

characters, upper or lower case, the dash, underscore, and period. For this example, let's

call ours nginx_data.

For the Driver, keep this on local for this example. It's likely that this will be the only

option, in any case. Additional drivers are an advanced feature and outside this lesson's

scope. We also don't need any driver options for this example.

Next you'll see options for either a NFS volume or CIFS volume. Again, for this example

we are going to skip these options, but if you were creating a volume from a NFS or CIFS

location, you would enable one of these options and fill in the required configuration.

If you're on a Swarm environment, you'll also see a Deployment section here and a Node

selector. This lets you specify the node that you want to create the volume on. As

described above, Swarm doesn't do anything special with volumes as compared to

Docker Standalone, so you must specify the node that the volume will reside on and take

that into account when provisioning your containers.

Only shown for Docker Swarm environments.

With everything configured, we can now click Create the volume. The volume will be

provisioned and you'll be returned to the volume list page, where you should now see

your new volume.

CONTINUE

Attach a volume to a container
Now that we've created our new named volume, we want to attach it to a container. For

this, we can use the nginx container we created in the previous lesson.

From Portainer, select your Docker environment then select Containers from the left

menu, Then, click the name of the nginx container we created earlier. This will take you to

the container details page. We want to make changes to this container's configuration, so

click the Duplicate/Edit button.

Now that we're editing our container, scroll down to the Advanced container settings

section and select the Volumes tab. You should see the bind mount we added when

creating the container here.

3

We can either remove our existing bind mount and replace it with the named volume

mount, or alternatively we can add the named volume alongside the bind mount at a

different path within the container. For this example, let's take the second option. Click

the map additional volume button to add a new set of fields. In the new container field,

enter our path within the container - for this example, let's mount it at

/usr/share/nginx/html/mydata. Ensure the Volume option is selected, as that's what

we're adding. Then from the volume dropdown, select the nginx_data volume we

created previously.

Your volume mappings should end up looking like this:

Once you're happy, click the Deploy the container button just above the Advanced

container settings section. You'll be asked to confirm your action as the container already

exists - click Replace to proceed.

Portainer will now remove the old container and spin up a new version of it with the new

configuration. You can confirm this has happened by clicking the name of the container

to go to the details page, then scroll down to the Volumes section where you will see

both the bind mount and named volume attached.

You can even browse to the IP of your server and the port we chose to view the

container contents as before, with the contents of the nginx_data volume available at

the /mydata subpath.

Note you will get a 403 Forbidden error when trying to browse to this path - this is

because there is no data in our new volume. Adding data to your named volume is

outside of the scope of this lesson, though if you are managing your Docker environment

with the Portainer Agent and have volume browsing enabled, you can browse the

contents of your volume and upload files directly from within the Portainer interface

under Volumes in the left menu.

CONTINUE

Summary
In this lesson we've covered the following:

4

The concepts behind a named volume, including specifics to note

about volumes on Swarm environments.

Creating a basic named volume through Portainer.

Attaching our new named volume to the nginx container we
previously created.

In the next lesson we'll look at how we can combine all we've learned so far about

containers and volumes into one deployment through the use of Stacks.

In previous lessons in this course, we've talked about containers and volumes (both bind

mounts and named volumes) - both elements that can help to make up an application

deployment. But rather than creating those elements individually, what if we could

provision everything we need to run our application all at once?

In this lesson, we'll talk about how we can do that using stacks. We'll cover:

A quick note about Compose and Stacks
When we talk about stacks in Portainer, we can be referring to one of two things,

depending on the type of environment:

For Docker Standalone environments, Stacks refers to Docker Compose file
deployments - for example, what you would use a "docker compose up" command
to start via the CLI.

For Docker Swarm environments, Stacks refers to Docker Stack file deployments -
for example, what you would use a "docker stack deploy" command to start via the
CLI.

Lesson 7 of 12

Anatomy of a stack

What a stack is1

The basic structure of a stack file2

Some of the elements that can be used when constructing a stack3

Functionally there's not very much difference between Compose stacks and Swarm

stacks - they're both created from YAML files that use the same format. There are some

definitions that are specific to either Compose or Swarm, but from an introductory

concept perspective we can talk about them interchangeably. We'll cover some of the

Swarm-specific functionality in a later lesson.

Because of these similarities, we opted to use the term Stacks across the Portainer

application for both Compose stacks and Swarm stacks.

START

What is a stack?
A stack is a way of providing a single definition that creates multiple elements, usually

(but not always) related to a single application deployment. A stack is defined in a YAML-

format file.

1

Our application component diagram, with the stack component highlighted.

To understand this further, let's look at an example application � WordPress. If you're not

familiar with WordPress, it is a blogging platform you can host and customize yourself. As

a web application, it has a few requirements:

On a traditional setup, you might have a VM that runs Apache with PHP and MySQL to

host this. In the container world though, best practice is to have a container for each

A web server (such as Apache or nginx) with PHP installed and

configured.

A database server (such as MySQL or MariaDB� within which it can

store the blog posts and other data.

A place to store the WordPress code, plugins and themes.

individual service, and volumes for persistent storage (the WordPress code, plugins and

themes, as well as the database files). For example:

Rather than creating (and managing) each of these elements individually, we can put

them into a single stack file definition. As well as being more organized, this improves the

portability of the application, as we could take that stack file, deploy it on a different

Docker installation and be confident that our application will come up with everything it

needs, first time.

CONTINUE

A container named wordpress that contains the web server

�Apache with PHP�

A volume named wp_data for the WordPress code, plugins and

themes

A container named db for the MySQL application

A volume named db_data for MySQL to store the database files

2

The stack file structure
Now that we have an example of how we might use a stack, let's create one. As above,

we'll create a stack for our WordPress deployment with:

Turning this into a stack file, we might end up with:

A container named wordpress that contains the web server

�Apache with PHP�

A volume named wp_data for the WordPress code, plugins and

themes

A container named db for the MySQL application

A volume named db_data for MySQL to store the database files

version: '3'

services:

 wordpress:

 image: wordpress:php8.1

 volumes:

 - wp_data:/var/www/html

 ports:

 - 8088:80

 restart: always

 environment:

 WORDPRESS_DB_HOST: db:3306

 WORDPRESS_DB_USER: wordpress

 WORDPRESS_DB_PASSWORD: wordpress

 db:

This might look confusing, but once you understand the concept it is pretty

straightforward. Let's start at the top.

CONTINUE

 image: mysql:8.1

 volumes:

 - db_data:/var/lib/mysql

 restart: always

 environment:

 MYSQL_ROOT_PASSWORD: secure_root_password

 MYSQL_DATABASE: wordpress

 MYSQL_USER: wordpress

 MYSQL_PASSWORD: wordpress

volumes:

 wp_data:

 db_data:

3

Stack files are YAML files, and as such adhere to the YAML
specification, which has strict formatting requirements, in
particular around indentation. This is outside the scope of this
course.

https://yaml.org/

Version

This specifies the version that your stack configuration adheres to, so that Docker

knows which specification to reference when parsing it. This is mostly for informational

purposes these days and isn't strictly necessary for Compose stacks, but we recommend

including it anyway.

The rest of the configuration file is split into sections based on the type of resource,

starting with Services.

Services

version: '3'

services:

 wordpress:

 image: wordpress:php8.1

 volumes:

 - wp_data:/var/www/html

 ports:

 - 8088:80

 restart: always

 environment:

 WORDPRESS_DB_HOST: db:3306

 WORDPRESS_DB_USER: wordpress

 WORDPRESS_DB_PASSWORD: wordpress

 db:

 image: mysql:8.1

Within the services section, we define our containers. Each container is defined by their

name (for example wordpress or db) and underneath that definition we specify the

necessary options for the container.

Let's now look at the options for each service.

Image

 volumes:

 - db_data:/var/lib/mysql

 restart: always

 environment:

 MYSQL_ROOT_PASSWORD: secure_root_password

 MYSQL_DATABASE: wordpress

 MYSQL_USER: wordpress

 MYSQL_PASSWORD: wordpress

 wordpress:

 image: wordpress:php8.1

This section is called "services" because each container is
considered a service that is running on your infrastructure. This
also ties into how stacks work in Swarm clusters, which we'll
cover in a later lesson.

First, we specify the image that the container uses. You'll remember from an earlier

lesson that the image is the "script" for your container, telling it what to do. In this case,

we're using the wordpress image with the php8.1 tag. This image includes Apache, PHP

8.1, and WordPress itself. For the database service, we're using mysql:8.1.

Volumes

Next we define the volumes this container will have access to. These are provided in a

list format, with hyphens denoting each list item. You can specify multiple volume

attachments within this section, but for this example we only need the one.

On the left of the colon, we're specifying a named volume, in this case wp_data. If you

were using a bind mount, you'd include the path on your host here. On the right of the

colon, we're specifying where within the container's file system we want to mount this

volume, in this case /var/www/html (the document root for the Apache installation in the

wordpress image).

If this looks familiar, it's the same way we ordered things when attaching our named

volume to our nginx container in a previous lesson. It's also the same order as you would

provide when creating a container with a docker run command.

For the database container, we're doing the same thing, but with a volume named

db_data mounted in /var/lib/mysql.

 volumes:

 - wp_data:/var/www/html

Ports

The ports option specifies the ports that the service should expose. Like volumes, this is

presented in a list format. The value to the left of the colon is the port to expose on the

host, and must not be already used by a service. The value to the right of the colon is the

port within the container that your service �Apache) is running on, and you would like to

be accessible from the host port.

In our example, we've chosen to use 8088 as the host port. If that port is already in use

on your host, adjust as needed. Apache uses port 80 by default, so our internal port is 80.

If you like, you can omit the host port entirely, and Docker will choose a random port to

assign on the host. Bear in mind this random port might change if the container is

restarted. You can also specify the host IP address as well as the host port, which is

useful if you have multiple network interfaces on your host and only want to expose the

port on one of them.

For the database service, we don't want to expose any ports at all, so we haven't

included this section. Docker's internal networking will allow the WordPress container to

talk to the database container without requiring us to expose the port externally.

 ports:

 - 8088:80

Restart

The restart setting specifies how the service acts when it is shut down. This also

covers how it behaves when the host itself is restarted. The always option we use here

means the service will always restart itself. Other options include on-failure, unless-

stopped, and no (the default). We've set the same restart option on both services.

Environment

The environment section allows you to set environment variables that will be configured

within the service. This can be formatted as an array (- key="value") or a dictionary

(key: value), and we've chosen to use the dictionary format in this example. The key is

the name of the environment variable, and the value is the value to apply to that

environment variable.

 restart: always

 environment:

 WORDPRESS_DB_HOST: db:3306

 WORDPRESS_DB_USER: wordpress

 WORDPRESS_DB_PASSWORD: wordpress

In this example, there is functionality built into the WordPress image we're using that can

take these specific environment variables in order to configure the database it will use

(which we'll be running as a separate service). Note that in the WORDPRESS_DB_HOST

environment variable we're referencing the name of the database service (db) � Docker

provides internal DNS resolutions for containers in the same stack.

We're using similar functionality from the MySQL image we're using for the database

service:

Here we're telling MySQL what to set as the root password, and we're also creating a

new database, user and password to be used by the WordPress container. Note the

username and password values here match those in the WordPress service's

environment variables.

This covers the services we need for our stack � WordPress and the associated

database. We've also mounted two named volumes - one for each service - at paths

within the container's file system. But we haven't yet created those named volumes.

That's what the next section is for.

Volumes
Just as the services section lets you create services, the volumes section lets you create

volumes. This is notably separate from the volumes options within each service, as those

 environment:

 MYSQL_ROOT_PASSWORD: secure_root_password

 MYSQL_DATABASE: wordpress

 MYSQL_USER: wordpress

 MYSQL_PASSWORD: wordpress

must always reference existing volumes (or bind mounts).

This may look like nothing, but it is important. Here we define two new named volumes,

wp_data and db_data. However, we don't specify any settings for each volume. This is

because we don't actually need to in this instance - the defaults that Docker uses when

creating volumes are what we want, so simply defining them as needing to exist is

enough to create them when the stack is provisioned.

If we did not have this section, the stack provision would fail, as the services are

referencing volumes that do not yet exist. If you had pre-created those named volumes,

you can tell Docker that with the external: true option in this section. For example:

If you're using bind mounts instead of named volumes, you don't need to define them in

this volumes section. This section is only for named volumes.

volumes:

 wp_data:

 db_data:

volumes:

 wp_data:

 external: true

 db_data:

 external: true

Other sections
This covers everything that makes up our example stack file, but there are other sections

that can exist, including networks, configs and secrets (for Swarm clusters), as well as

many other options within each section. These are out of scope for this lesson, however.

You can find a comprehensive list in the Docker documentation.

CONTINUE

Summary
In this lesson we've learned about how we can combine multiple components into a stack

file. We've covered:

Next, we'll use what we've just learned to spin up a WordPress stack in our environment.

4

The basics of what a stack is (for both Docker Standalone and

Docker Swarm)
1

The structure of stack files2

Some of the sections and options that can be used in a stack file
through an example deployment of WordPress.

3

https://docs.docker.com/compose/compose-file/

In the previous lesson we introduced the concept of stacks in Docker, and looked at an

example stack to deploy WordPress. In this lesson, we'll put that learning into practice.

We will:

START

Lesson 8 of 12

Deploy a stack

Examine the options for deploying a stack with Portainer1

Deploy our example WordPress stack to our environment2

1

Deploying a stack with Portainer
Portainer provides multiple methods for how you can deploy a stack, depending on how

you wish to supply your stack file and how you want to manage it. Regardless of which

option you choose, the first step is to select your Docker environment, then in the left

menu select Stacks.

Here you'll see a list of stacks (if any) deployed to your environment. We're going to

create a new one, so click the Add stack button in the top right.

Every stack needs a name, so let's start by entering one. Stack names must be unique

across your environment. For our example, since we're deploying WordPress, let's call

ours wordpress.

Next, we choose the build method we want to use for our stack. Portainer provides four

options for this:

Web editor

Upload

Repository

Custom template

For this example we're going to use the Web editor option, but let's first briefly discuss

the other options that are available.

The Upload method is similar to the Web editor option, but instead of entering your stack file into a
form field in the Portainer UI, you would instead select a local YAML file that contains your stack to
upload.

U P LOA D R E P O S I TO R Y C U S TO M T E M P L AT E

If you have your stack file stored in a Git repository, you can use Portainer to deploy directly from
there to your environment. This lets you use Git as the "source of truth" for your stack
configuration, and with our GitOps update functionality you can automate stack updates based on
changes in the Git repo. This is our recommended approach for stack deployment on production
systems.

We'll go into much more detail on the Repository deployment option in a later course.

U P LOA D R E P O S I TO R Y C U S TO M T E M P L AT E

Portainer lets you create custom templates that you can reuse again and again to deploy actual
stacks. These can be sourced from any of the other three build methods, and can contain variables
that can be adjusted on deployment.

CONTINUE

Deploy with the Web editor
In the Build method section, select the Web editor option. You'll now see a field for you

to enter your stack file definition. We're going to use our WordPress stack from the last

lesson here - here it is again:

U P LOA D R E P O S I TO R Y C U S TO M T E M P L AT E

2

To refresh, this stack file is going to create two containers - a WordPress container and a

MySQL database container - and two volumes (wp_data and db_data) that will provide

persistent storage for our two containers.

Paste the above code into the web editor form in Portainer. It should end up looking

something like this:

version: '3'

services:

 wordpress:

 image: wordpress:php8.1

 volumes:

 - wp_data:/var/www/html

 ports:

 - 8088:80

 restart: always

 environment:

 WORDPRESS_DB_HOST: db:3306

 WORDPRESS_DB_USER: wordpress

 WORDPRESS_DB_PASSWORD: wordpress

 db:

 image: mysql:8.1

 volumes:

 - db_data:/var/lib/mysql

 restart: always

 environment:

 MYSQL_ROOT_PASSWORD: secure_root_password

 MYSQL_DATABASE: wordpress

 MYSQL_USER: wordpress

 MYSQL_PASSWORD: wordpress

volumes:

 wp_data:

 db_data:

Below the editor you will see additional options for webhooks, environment variables and

access control. For this example we won't be using any of those, so you can simply click

the Deploy the stack button now.

Your stack will now be deployed to your environment, and you'll be returned to your list

of stacks.

You can click on the name of your stack to view the stack details, including the

containers that make up the stack.

If you open a web browser to the IP address of your environment with the port we

exposed for WordPress (8088) we will be presented with the WordPress installation

wizard, showing that both the WordPress and MySQL containers have deployed

successfully.

CONTINUE

Summary

3

In this lesson we took what we learned in the previous lesson about stacks and deployed

a stack in our Docker environment. We covered:

In our next lesson we'll look at Docker Swarm in further detail, in particular around

deployment considerations when running a Swarm environment.

The methods you can use to deploy a stack from Portainer

Deploying our WordPress stack using the Web editor method

In previous lessons in this course, we've introduced the basic building blocks of a Docker

deployment; namely containers, volumes and stacks. In this lesson we'll cover how those

concepts apply to Docker Swarm. We'll learn:

Let's get started then, with learning what Docker Swarm is.

START

Lesson 9 of 12

What is a Swarm?

What Docker Swarm is1

How Docker Swarm differs from Docker Standalone2

When you may want to use Docker Swarm instead of Docker
Standalone

3

1

Introducing Docker Swarm
Built on the underlying Docker technology, Docker Swarm can be thought of as an

orchestration and management layer on top of Docker, specifically designed to allow for

managing of and deployment over a cluster of Docker installations. This provides

powerful features such as replication and load balancing, but does require multiple

interconnected Docker installations across multiple servers, and as such has an

additional management overhead to consider.

A Swarm cluster is made up of nodes, which are individual Docker installations running in

swarm mode. Nodes can be either manager or worker nodes, or both. Manager nodes

are in charge of allocating tasks to worker nodes based on the parent service's

configuration, as well as handling the management of the cluster itself. Worker nodes

are, as the name suggests, nodes that handle the workload distributed to them by the

manager nodes.

A service is a definition of tasks that can be deployed on the Swarm cluster. Services

contain the image and configuration for a container that will run on the cluster, along with

a replication configuration - either the number of replicas to have running at any one

time, or "global" mode in which the service is has a single task running on each node in

the cluster.

A task is the actual container created on a node, defined by the service configuration,

and placed according to the replication configuration of the service.

We'll talk about the technical configuration of services in the
next lesson.

CONTINUE

Docker Swarm vs Docker Standalone
There are important differences to be aware of when it comes to Docker Standalone

versus Docker Swarm.

With Docker Standalone, you're limited to deploying on a single Docker installation.

There's no facility for replication or scaling across multiple nodes, for either redundancy

or performance. With Docker Swarm, you have multiple nodes (servers running Docker)

connected together into a cluster of nodes that act as one environment. In this

arrangement, when deploying a service you can define the "optimal state" of that service,

for example how many replicas of that service you want to be running at one time. Then,

if one of the nodes in your cluster goes down, Docker Swarm will recognize the state is

no longer optimal and schedules that service's tasks (ie, containers) that were on that

missing node onto other nodes in the cluster, in order to re-establish the service's

optimal state.

This distributed replica system can also allow you to make configuration changes to

services without downtime. Let's say you had a service running 3 replicas across your

cluster. You make a configuration change to the service, and Docker Swarm will shut

down one of the 3 tasks and deploy the updated version of it. It will then do the same to

the second task, and then the third. In this way, the service stays active the entire time it

is being updated.

Docker Swarm also includes ingress load balancing in order to provide access to your

service regardless of the node it currently resides on. When you publish a port for a

2

service, that port is available from any node in the cluster on that port. The swarm's

internal networking routes the request to the correct node automatically.

On the flipside, to take advantage of these features, Docker Swarm does require you to

have multiple Docker installations, which could increase the operating costs of your

environment. The number of nodes will depend on your specific requirements, but you do

need to consider redundancy of manager nodes as well as worker nodes in order to

ensure your cluster can reach a consensus as to the configuration.

 You will also need to ensure that each node in the swarm is able to reach and

communicate with the others in order to act efficiently. This can be challenging in some

networking configurations and with some providers, and adds another layer of complexity

to manage.

CONTINUE

When would I use Swarm instead of Standalone?
Your specific needs will dictate whether Docker Swarm makes sense for you. If you don't

need the replication and redundancy capabilities that swarm mode provides, then you

could stick with Docker Standalone. If however these sound like something you do need,

then Swarm can help to provide this.

3

Use Swarm when: Use Standalone when:

You need to provide replication
and/or redundancy to your services

Replication and redundancy are not a
concern to you

You want to be able to do no-
downtime service updates

You are okay with short downtimes
when updating services

You are able to provision multiple
servers to make up the nodes for

your cluster

You want to keep server costs down
or have limited resources

You are comfortable with the
management overhead of

maintaining multiple Docker servers

You don't want to manage multiple
Docker servers

This all sounds like Kubernetes...
If you're familiar with Kubernetes, then yes, a lot of this functionality will sound the same.

Kubernetes could be considered the next evolution of the concepts that Docker Swarm

popularized. While Kubernetes is extremely powerful and fills a lot of the same needs as

Docker Swarm, there is a steeper learning curve when it comes to switching to Kube from

Docker, and in some cases moving to Docker Swarm is an easier transition for those used

to the Docker way of doing things.

CONTINUE

4

Summary
This lesson has been about introducing you to the concept of Docker Swarm as

compared to Docker Standalone. We've talked about:

In the next lesson, we'll look at how you would configure a service to take advantage of

Docker Swarm's capabilities.

What Docker Swarm is

What the differences are between Docker Standalone and Docker
Swarm

Some examples of where you might want to use Docker Swarm and

where you might want to stick with Docker Standalone

To take advantage of Docker Swarm's orchestration capabilities, instead of deploying

containers you should instead be deploying services. This lesson will introduce the

concept of services as it pertains to Docker Swarm. We'll examine:

In the following lesson we'll put this knowledge into practice, but for now let's learn what

a service is.

START

Lesson 10 of 12

Anatomy of a service

What a service is1

Why you should use a service instead of containers2

The specific options available when deploying a service3

1

Introducing Services
As we briefly discussed in the previous lesson, a service in Swarm is a definition of a task

to perform. The service defines the image and configuration, and is used to generate

tasks (ie, containers) that actually handle the workload.

A key component of services on Swarm is the replication model. This determines how the

tasks that the service defines are distributed across the nodes in your Swarm cluster.

You can specify how many replicas a service must run as a minimum, and this can be

adjusted on the fly as required. Alternatively, you can define a service as global, in which

case the service will run a task on each available node in the cluster.

Mechanically, the configuration of a service is very similar to that of a container, in that

you define the image to use, ports to open, volumes, networking, and much more.

However, you also define the replication model as described above, and must also take

into consideration how your application will behave in a replicated or distributed model,

both from a processing standpoint and a persistent storage standpoint.

CONTINUE

Services versus Containers
The major difference to consider between services and containers is that services are

multi-node aware, whereas containers can't be replicated or distributed in the same way.

If you want to take advantage of Swarm's multi-node capabilities you will want to deploy

your application as a service instead of a container, and define the replication model as

2

needed. If you just need to run a workload on a single node, you can spin up a container

in the same way you would on a Docker Standalone environment.

Bear in mind that your application needs to be architected to work with your chosen

replication model. Any persistent storage needs to be accessible from all the nodes you

intend to run your service on, and in the same way, which can be complicated to achieve

depending on your configuration. If you're looking at running your service on multiple

nodes simultaneously (for example for load balancing or redundancy) you'll need to make

sure your application is designed for this. For a static HTML website this might be fine,

but if your application does any database writes for example, the database will need to

be able to handle potential writes from multiple sources.

In most cases if you're looking at replication for your application you'll be aware of the

technical considerations of doing so.

CONTINUE

Service specific options
As we've already discussed, most of the options when adding a service will be familiar to

you from adding a container, as they're very closely related. But let's look at the options

that are specific to services.

Scheduling

3

This is the primary difference with services as compared to containers, and most other

options we cover will stem from this. Your first choice is to choose the scheduling mode -

Global or Replicated.

In Global mode, the service will run one task (container) per node in the cluster. So for a 3

node Swarm cluster, your service will run 3 tasks, one on each cluster.

In Replicated mode, you can choose the number of replicas to run. This can be as many

as you need, and isn't limited by the number of nodes in your cluster - you could example

run 6 replicas on a 3 node cluster, and you would end up with 2 tasks on each node.

Update config and Restart
Here you can configure how updates to your services behave, as well as how they

restart. You can define how many tasks to update at once when you update the service.

This defaults to one task at a time, but if you're running a large amount of replicas you

may want to increase this value. You can also set the delay between each task (or tasks)

update, how to behave when an update fails, and the order of operations on the update.

For restarts, you can configure under what condition task restarts occur, as well as

delays, max restart attempts and the restart window.

Secrets and Configs
With services on Docker Swarm you can use secrets and configs to provide information

to your service (and underlying tasks) outside of the image and persistent storage. This is

useful for a configuration that might be specific to the environment you're running on (for

example a dev environment versus a production environment), or in the case of secrets,

sensitive data (such as a SSL certificate and key) that you don't want to store in the

image itself.

We'll cover configs and secrets in more detail in a future lesson.

Resources and placement
Here you can configure resource reservations and limits for your service's tasks, for both

memory and CPU.

You can also set placement constraints and preferences for your service's tasks here. A

placement constraint lets you restrict a task to run only on nodes that meet the

conditions you specify. This is done through the use of metadata such as labels, both

built-in and custom.

A placement preference lets you define how you would like to distribute your tasks

across the nodes in the cluster. This can be done by specifying the strategy (at the time

of writing the only strategy supported by Swarm is the spread strategy) and a label that

will be set on the nodes. For example, if each of your nodes had a label called datacenter

which defined which datacenter they were in, you could use this to ensure your tasks

were spread across nodes that were in different datacenters.

CONTINUE

Summary
In this lesson we've looked at what makes up a service, and in particular how services

compare to containers. We've looked at:

In the next lesson we'll put this into practice by creating our own service.

4

What a service is

When you may want to use a service instead of a container, and

some of the caveats that need to be considered when doing so

The primary configuration differences when creating a service

versus a container

In the previous lesson we examined the service model in Docker Swarm, including the

concept of services and the options specific to service creation. In this lesson we're

putting that learning into practice. We will:

As services are a Docker Swarm feature, this lesson will require you to have a Docker

Swarm environment configured in Portainer.

START

Lesson 11 of 12

Deploy a service

Create a new service in our Docker Swarm environment1

Check the deployment status of our service2

Scale our service to adjust the number of tasks deployed3

1

Create a service
For this demo we're going to create a nginx service deployed across your Docker Swarm

environment.

Log into Portainer and select your Docker Swarm environment. From the left hand menu

select Services. This will take you to the list of services on your environment.

To create a service, click the Add service button in the top right. You'll be taken to the

Create service form. Enter a name for the service (we'll use nginx in this example) and

an image and tag (for this example, nginx:latest).

The next section is new to services - Scheduling. Here you define the scheduling mode

of the service and, in replicated mode, how many replicas each task has.

As we discussed previously, Global mode means the service will deploy a task to every

node in the Swarm cluster. In Replicated mode, you define the number of tasks to deploy.

For this example, we're going to start with a single replica. Ensure the scheduling mode

is set to Replicated and that Replicas is set to 1.

Next we'll publish a port. In the Ports configuration section, click map additional port. In

the fields that appear, set 8199 as the host port and 80 as the container port. Ensure

TCP and Ingress are selected.

For this example there's nothing further we need to change from the defaults, so go

ahead and click Create the service to begin the provision.

If port 8199 is already in use on your cluster, you can change
this to a port that suits.

The service will now be created, and the task will be assigned to one of your Swarm

nodes.

CONTINUE

Check on our service deployment
We now have a nginx service running on our swarm cluster, so let's have a look at it.

When the provisioning completed you would have been returned to the services list, so

find the nginx service there and expand it by clicking on the arrow to the left of the

service name. You'll see details of the tasks the service contains - in our case, just the

one - including the status, task identifier, and actions you can perform on that task as

well as the slot the task inhabits, the node it is deployed to and the last update date and

time.

2

You can check the nginx container is working as expected by opening a new browser tab

and going to http://any_node_ip_address:8199 (replace any_node_ip_address

with an IP of a node in your cluster) - you should see the default nginx welcome page.

Note that this works on any of the node IP addresses in your cluster, regardless of

whether the service has a task scheduled there. This is because Docker Swarm's routing

mesh automatically sends your request to a node and task that can fulfil it. For example,

if I had a 3 node cluster with the following IPs:

I could reach that single nginx task we've created at any of the following addresses:

192.168.1.101

192.168.1.102

192.168.1.103

http://192.168.1.101:8199

http://192.168.1.102:8199

http://192.168.1.103:8199

CONTINUE

Scaling up our service
Our nginx service is deployed and working, and we've taken a look at it's status. But

we're only running one task right now. Let's scale that up.

From the services list, locate the nginx service we created earlier. You'll note under the

Scheduling mode column it will be listed as replicated and with 1/1 replicas. Click the

arrow next to the service name to expand it and we will see the list of the service's tasks

(just one, right now).

To scale up the service, click on Scale next to the replica count. A new box will appear

allowing you to adjust the number of desired replicas. Set this to 3, either by typing it in

or using the arrows to adjust the number up, then click the tick (or press enter).

3

Scaling will now commence on the service. You should see the page refresh, with the

task list for the nginx service now containing three items - one being the previously

running task, and the other two new tasks that are being spun up.

Initially these will be in assigned status. If you refresh the service list you may see these

tasks going through various states until they also reach running status alongside the

existing task. Once this completes, you'll have 3 tasks running for your nginx service.

Now if one of your nodes was to go offline, the other tasks would still be able to provide

the nginx service to users.

If you have 3 or more worker nodes in your Swarm cluster, these
tasks should each be assigned to different nodes. If you have
less than 3 worker nodes in your cluster, you'll see multiple
tasks on some nodes.

We can scale in reverse as well. Let's take our nginx service back down to a single

replica. Again, click on Scale, and change the value from 3 to 1. Click the tick to apply the

scaling. Swarm will now scale down the service to a single replica, shutting down two of

the tasks to do so. If you refresh the service list, you'll see the tasks shut down and then

disappear from the list.

CONTINUE

Summary

4

Congratulations, you've provisioned and scaled a service on Docker Swarm! This lesson

covered:

Next we'll summarize everything we've talked about in this course.

Creating a new nginx service

Checking the status of the nginx service after deployment, and how

swarm routing works to provide access to your service's tasks no

matter what node they're on

Scaling up (and down) our service

Congratulations, you've now completed the Deploying on Docker with Portainer course!

In this course we've covered a lot of ground, including:

This is by no means an exhaustive exploration of deploying with Docker - there are many

more configuration options and methods you can use. Some of these we will be

Lesson 12 of 12

Summary

An introduction to containers - the concept, creation and editing

through Portainer.

Volumes - what they are, the differences between bind mounts and

named volumes, and how to create and attach named volumes to

containers.

How to combine what we learned about containers and volumes
into stacks for better organization and smoother deployments.

Docker Swarm - what it is, how it differs from Docker Standalone,

and when you'd use it.

Swarm's big point of difference: services - including how they work,
how to create them, and how to scale service deployments.

discussing in other courses. However, you should now be familiar with the concepts of

deployments on Docker and be able to begin your deployment journey.

