
Learn how you can use Portainer to deploy your applications on Kubernetes
environments, including an introduction to Kubernetes and real world example
deployments.

INTRO TO KUBERNETES

WORKING WITH APPLICATIONS

SUMMARY

Introduc�on

What is Kubernetes?

Anatomy of a Kubernetes cluster

Objects in Kubernetes

Deploy your first applica�on

Edi�ng your applica�on

Deploying via manifest

Deploying on Kubernetes with Portainer

Summary

Welcome!
Thank you for starting the Deploying on Kubernetes with Portainer course!

This course is intended as an introduction to the concepts of deploying on Kubernetes

environments, and will cover the following topics:

By the end of this course you should have a good understanding of deploying on

Kubernetes environments. We won't cover every piece of functionality here, but this

should get you confident with the important deployment concepts and prepare you for

more advanced topics.

Lesson 1 of 8

Introduction

An introduction to Kubernetes itself, including when to use it, what
elements make up a cluster, and a look at the objects you can

deploy on Kubernetes.

1

Creating an application with Portainer using our form-based

approach, as well as editing after deployment.
2

Creating an application with Portainer when you have an existing

manifest, and again, editing after deployment.
3

What you should know before you start
In this course we will give you an introduction to Kubernetes itself, but we do make the

assumption that you have an understanding of the basic concepts behind

containerization. If you've used Docker before and have a good feeling for how it works,

then you should be fine. If you're brand new to containerization, we recommend starting

with our Deploying on Docker with Portainer course first, in particular the Anatomy of a

container lesson.

Now that the formalities are out of the way, let's get started with an introduction to

Kubernetes.

https://academy.portainer.io/deploy/docker/

At this point in your journey, you know what containerization is, and may be familiar with

technologies like Docker that provide this. But how does Kubernetes fit in to the

ecosystem?

In this lesson we'll cover:

START

Lesson 2 of 8

What is Kubernetes?

An introduction to orchestration and how Kubernetes implements it1

How Kubernetes differs from other orchestrators2

When you might (and might not) want to use Kubernetes in your

organization
3

1

Orchestration and Kubernetes
A common term used to describe Kubernetes is as a container orchestrator. In a simple

container system, such as Docker Standalone, you can spin up a container for your

workload based on an image that will provide you with what you need for your particular

task, nothing more. When you're done with it, you can remove that container.

What Docker Standalone doesn't provide however is a mechanism to automatically

dictate what goes on with your deployments. Say, for example, your container crashed.

With Docker Standalone, you would have to first notice the container had crashed, then

manually recreate it again to get back up and running. What if, then, the entire node went

down? How do you recover from that scenario - manually spin up a new node, create

your containers, and hope for the best?

An orchestrator such as Kubernetes can help you to take care of these scenarios

automatically for you, no user interaction required. You as the user would define the state

in which you want your deployment to be, and Kubernetes would then use that to create

the necessary containers and configurations to meet your definition. If something

happens to those containers, Kubernetes will recognize that the deployment no longer

matches the state you defined and will act accordingly. For example, if a container

crashes, Kubernetes would automatically provision another one to replace it. If a whole

node dies, Kubernetes would reallocate the workloads onto a still running node, making

sure your application continues to function. We refer to this as fault tolerance.

Kubernetes implements orchestration in a declarative nature - as described above, you

define the state you want and Kubernetes' job is to ensure that state is met, and retained.

You can adjust this definition as desired (for example, scale up or down a particular

service), and Kubernetes will apply the necessary changes to the deployment as a result.

CONTINUE

Kubernetes vs other orchestrators
When we're looking at container orchestration platforms, there are two main players �

Kubernetes, and Docker Swarm.

Docker Swarm, as the name implies, is an extension of the Docker ecosystem, and

provides orchestration capabilities on top of the base Docker engine. Docker Swarm

gives you the standard orchestration functionality you'd expect including fault tolerance,

load balancing, and service management and scaling. It is fairly straightforward to

configure, as it essentially combines multiple Docker Standalone instances into one

Swarm. However, it does have some limitations - there is no automatic scaling

functionality in Docker Swarm, and no storage management. It is also less extensible than

Kubernetes, and is tied to the Docker platform.

Kubernetes on the other hand is a more powerful orchestrator that was designed for the

needs of enterprise customers. As such, Kubernetes provides the standard fault

tolerance, load balancing and scaling you'd expect but also provides self-healing and

automatic scaling functionality. Kubernetes provides advanced access control

functionality as compared to Docker Swarm. Storage for your containers is managed

through Kubernetes' storage class system, and there are a number of third party plugins

that provide additional functionality as needed such as monitoring and alerting, storage

and networking options, and more.

There is a tradeoff here though, in that the additional power that Kubernetes provides

comes with increased complexity. A Docker Swarm setup can be easier to deploy and

manage than a Kubernetes cluster, and some of the Kubernetes concepts can take a bit

of time to learn.

2

CONTINUE

When to choose Kubernetes
Kubernetes is powerful but complex, and while it is extremely flexible in the workloads it

can support and manage, there may be some situations when a different system is

preferable.

If you need fault tolerance for your workloads - if they need to stay running and

performant no matter what, and you want that to be taken care of automatically - then

Kubernetes is a good fit. If you like the sound of defining a "desired" state and letting the

orchestrator take care of the implementation, then Kubernetes will work for you.

Kubernetes is generally recommended when you are running an enterprise-level solution

and need the robustness to keep that solution functioning.

If fault tolerance isn't a concern for you, and you just want to get your container up and

running, then you might not need the full power and complexity of Kubernetes. For local

development or testing environments, or small home lab deployments, Docker

Standalone or Docker Swarm might be a better bet.

Your specific requirements will be unique to you, and we'll leave the decision in your

hands. This course assumes that you have decided to continue with Kubernetes.

CONTINUE

3

Summary
In this lesson we've discussed the basics of Kubernetes. We've looked at:

In the next lesson we'll look at what components go together to make up a Kubernetes

cluster.

4

The concept of orchestration, and how Kubernetes applies to it.

How Kubernetes compares to other orchestrators, primarily Docker

Swarm.

Some examples of when you might want to use Kubernetes, and

when you might not.

To enable the fault tolerance and load balancing functionality that Kubernetes provides, a

Kubernetes cluster is made up of a number of different components. In this lesson we'll

give you an overview of those components. We'll discuss:

Let's start with an introduction to nodes.

START

Lesson 3 of 8

Anatomy of a Kubernetes cluster

The two different types of nodes that make up a Kubernetes cluster1

The components that run on each type of node2

How those components work together to provide the cluster
capabilities

3

1

Nodes in Kubernetes: Control Planes and Workers
The two types of nodes that make up a Kubernetes cluster are control plane nodes (also

referred to as master nodes) and worker nodes. The names give you a good idea of what

each is for, but:

A node can be both a control plane and a worker node, but in most production

environments it is advisable to separate the responsibilities.

CONTINUE

Control plane components

A control plane node is in charge of managing the cluster - it

contains the API server, scheduler, controller manager and the etcd

datastore. A cluster will have at least one control plane node, and
depending on the size of your environment perhaps more.

A worker node is where the workloads are allocated - in other

words, where your applications will actually run. Most of a worker

node's resources are intended to be available for your applications,
so the only components that run here are the kubelet (for

communication with the control plane) and the kube-proxy (which

allows communication between containers across nodes).

2

Let's talk briefly about those control plane components we mentioned earlier.

Worker components
Besides your actual workload, worker nodes have only two system components:

The API server is what you're interacting with when you request

something of Kubernetes. If you want to spin up a deployment, you

send it to the API server which will validate your request and act
accordingly.

The scheduler is the component that determines where the objects

that make up your deployments are, well, deployed. The scheduler

checks with the API server whether there are any objects that
haven't been assigned to a node (based on the desired state). If

there are, the scheduler decides which nodes to deploy those

objects to.

The controller manager is what checks to see whether the current
state of the cluster (and the objects within) matches the desired

state. If it doesn't, it will tell the API server that it needs to make a

change in order to reach that desired state. The controller manager

is made up of a collection of individual controllers for each object
type.

Lastly, the etcd datastore is a key-value store that contains a

record of the desired state of the cluster and objects. Whenever the

API server makes a check or a change, that data is stored and
persisted in the etcd datastore.

The kubelet is an interface between the individual nodes and the

control plane. It checks in with the API server on the control plane to
see whether there are any containers that are assigned to its node.

If there are, it spins up the necessary containers to fill that request.

CONTINUE

An example of component communication
We've described above some of the ways that the components of a cluster interact, but

let's look at it with an example. Let's imagine you're deploying your application to your

Kubernetes cluster.

The kube-proxy provides inter-node networking for containers, so

that containers on different nodes can communicate with each

other. The kube-proxy is responsible for directing traffic to the
correct container on the node.

3

First, you send your deployment to the API server component. You

could do this through the Portainer interface (more on that in future

lessons) or through the kubectl command line utility.

1

The API server would then validate your deployment to make sure it

makes syntactical sense, and then update the etcd datastore with

the new desired state.

2

The scheduler checks in with the API server to see if there are any
objects that it needs to assign to a node. In the case of a new

deployment this will definitely be the case. The API server reports

back to the scheduler with the unassigned objects (based on what's

3

As you can see, the individual components work together to ensure that your deployment

is provisioned as you requested, and that it remains as you requested. If one of the

containers that make up your deployment went down:

in etcd). The scheduler then assigns objects to nodes as required,

and reports this back to the API server, which updates etcd.

The controller manager checks in with the API server comparing
the current state to the desired state (which the API server pulls

from etcd). As the current state does not match because of the new

deployment, the controller manager requests the changes be

applied via the API server, which updates etcd.

4

The kubelets on the individual nodes check in with the API server to

see what they should be running. The API server returns a list to the

kubelets, which then spin up the necessary objects on their nodes.

The list the API server provides to the kubelets is based on what is
in etcd, which has been updated by the scheduler to determine

which nodes to run each object on, and has been updated by the

controller manager, which flagged that the required objects were

not running and requested the creation of the objects.

5

The controller manager would notice this and request that the API

server resolve the issue by creating a new object (in this case, a
container).

1

The scheduler would then see that request and determine which

node to assign the new container to.
2

The kubelet on the assigned node would see the new object
request and spin up the container.

3

Similarly, if you made a change to your deployment:

CONTINUE

Summary
In this lesson we've examined what makes up a Kubernetes cluster. We've discussed:

The controller manager would notice the actual state no longer
matches the new desired state, and would ask the API server to

resolve this.

1

If the change requires that a new object be created, then the

scheduler would determine the node to place it on.
2

The kubelet on the assigned node would see the new object

request and create it as needed.
3

4

Now that we have an understanding of the underlying infrastructure of Kubernetes, we

can look at what kinds of objects we can deploy on that infrastructure.

The two different types of nodes: control plane and worker nodes.

The components that each node type runs.

The way that each of these components interact with each other to
deploy and maintain your workloads.

In the previous lesson we made reference to objects within Kubernetes. In this lesson

we'll dive into the concept of objects, including:

START

What is an object?
When you create a workload in Kubernetes, you are doing so by defining a desired state.

This desired state is made up of a collection of components that we refer to as objects.

Lesson 4 of 8

Objects in Kubernetes

What an object is in Kubernetes1

Some of the main object types2

How those objects cooperate to form your application3

1

Each object type has a different role, and as such provides a different piece of the puzzle

that completes your workload.

Some objects are obvious, such as containers and volumes, but there are others such as

Pods, Deployments, Services and Ingresses that might not be as straightforward a

concept. Kubernetes is also extensible, so what objects can do can be expanded beyond

the built-in functionality with third-party addons.

Objects are created within Kubernetes through the use of manifests - usually YAML but

sometimes JSON files that contain the necessary definitions to specify the desired state

of your workload. In Portainer we support the creation of workloads through manifests as

well as through a form-based interface if you prefer. We'll show some examples of YAML

manifests later in this lesson.

Let's dive into some of the more common objects that you'll be using with your

workloads.

CONTINUE

Common Kubernetes objects
There are many object types in Kubernetes, but let's have a look at the ones you're most

likely to run into when creating and managing your workloads, starting with arguably the

most important object of them all - the Pod.

2

Pods
A Pod in Kubernetes is a group of one or more containers that share their storage and

network resources between themselves. The containers in a Pod will always be together

on the same node so that they can share those resources, and when there is more than

one container in a Pod they will be very closely related to each other.

Like the container concepts discussed in our Docker course, Pods are designed to be

ephemeral - that is, if they go away, they can be easily replaced without any loss of data.

Pods are where the real work happens, and the rest of Kubernetes is built around

providing access to and management of your Pods. Here's an example manifest that

would create a Pod consisting of a single nginx container:

apiVersion: v1

kind: Pod

metadata:

 name: nginx

spec:

 containers:

 - name: nginx

 image: nginx:latest

 ports:

 - containerPort: 80

The metadata section is where we define the name of the Pod. The spec section is

where we specify the configuration for the container (or containers) that make up the

Pod. You can see we've called the Pod nginx and the container will use the

nginx:latest image and expose port 80.

However, in most cases you wouldn't create a Pod directly - instead, you'd do so with a

different object such as a Deployment.

Deployments
With a Deployment object, we start to get into the declarative nature of Kubernetes.

Within a Deployment, you define the desired state of your Pods. This is what the

controller-manager uses to determine what objects need to exist.

A Deployment lets you set the template you want to use for your Pods as well as the

number of replicas desired for those Pods. The template contains the settings you want

to use to create the containers that make up the Pods, such as the image to use, ports to

expose, and labels to apply. The replica setting defines how many instances of those

Pods you want to create across your cluster. A Deployment also lets you define a

selector, which is how you associate Pods with Deployments. Often this is done using

labels.

Here's an example Deployment that will create three nginx Pods, using the example we

provided before:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: my-nginx-deployment

 labels:

 app: nginx

spec:

 replicas: 3

Like before, we use the metadata section to name the Deployment. We're also attaching

a label here. In the spec we're specifying the number of replicas as 3. In the

selector section we're telling Kubernetes that we want to associate any Pods that have

a label called app with the value of nginx to this Deployment. Then in the template

section, we set the metadata on each Pod to contain an app label with the value nginx

to complete that selector. The template spec, as before, defines the container settings.

There's a number of other settings that go into a Deployment such as resource limits,

update and rollout strategies, and more, but for now let's move on to the next object

type: the Service.

Services
When a Pod is created in Kubernetes it is assigned a unique internal IP address that it is

available on throughout the cluster. However, with the ephemeral nature of Pods, this is

not a reliable way to access your workload as any of those Pods could go away, either

due to a temporary failure or a reconfiguration of the Deployment. To provide this access

to the Pods, you can use a Service object.

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: nginx

 image: nginx:latest

 ports:

 - containerPort: 80

Think of Services like a network router that knows about which Pods are available and

sends requests to those Pods accordingly. Using labels, you define which Pods the

Service will provide access to. The Service will constantly check for Pods that match the

selection criteria and update routing as necessary.

Here's an example Service definition that we could use alongside our nginx Deployment

from above:

In the spec we are defining a selector that works the same as our Deployment

matching, looking for Pods with a label named app and a value of nginx. In the ports

section we're defining that we want to provide access to the Pods on port 80 with the

TCP protocol. The targetPort is optional, but is handy if your Pods are exposed on a

different port to the one you want to publish.

Services (using the default ClusterIP type) use a virtual IP to publish your ports internally

within your Kubernetes cluster. If you want to provide access to your workload from an

external location, you can use an Ingress.

apiVersion: v1

kind: Service

metadata:

 name: my-nginx-service

 labels:

 app: nginx

spec:

 selector:

 app: nginx

 ports:

 - protocol: TCP

 port: 80

 targetPort: 80

Ingresses
The Ingress object provides you with a way to make your workload accessible outside of

your Kubernetes cluster. An Ingress will accept traffic from an external source and route

it to the specified Service.

Separating Services and Ingresses means that you can limit external access to only the

Services you want - for example, if your workload contained a web server and a database

server, you would only want to provide external access to the web server and not to the

database server. To achieve this you would configure your Ingress to only route to the

web server's Service and not the database server's Service.

Let's say we wanted to make our nginx Deployment available externally through an

Ingress. We created the necessary Service, so now we create the Ingress:

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: my-nginx-ingress

 annotations:

 nginx.ingress.kubernetes.io/rewrite-target: /

spec:

 ingressClassName: nginx

 rules:

 - http:

 paths:

Ingresses are generally restricted to HTTP and HTTPS traffic to
a ClusterIP Service - for other traffic types you may want to look
at alternative Service types such as NodePort or LoadBalancer.

Ingresses are often configured using annotations, and in this example we're setting the

rewrite-target to /. In the spec you can see we've specified the ingressClassName

as nginx (more on this below), and then can define rules in order to specify the routing.

We've only got the one rule here, called http, and it defines that any URL with the /app

prefix (for example, http://my-server/app/hello.html) will be routed to the my-

nginx-service Service we created earlier, on port 80.

There are a few caveats to using Ingresses. First, an Ingress Controller must exist for the

Ingress to work. There are many different types of Ingress Controller you can configure,

but for this example we're using the ingress-nginx controller. You also need an Ingress

Class configured, which is what defines the settings for the Ingress Controller. In this

example, we assume you have both of these set up, and your Ingress Class is named

nginx. Configuring Ingress Controllers and Ingress Classes is outside the scope of this

particular introductory lesson.

Other Kubernetes objects
The four object types we've covered are some of the most important to understand, as

they demonstrate how the Kubernetes systems work together. There are many other

object types, such as Jobs for run-once actions, Volumes for storage, ConfigMaps and

Secrets for providing configuration data and sensitive information respectively, and

Namespaces for providing segregation between objects and resources. We'll cover some

of these in future lessons.

 - path: /app

 pathType: Prefix

 backend:

 service:

 name: my-nginx-service

 port:

 number: 80

CONTINUE

Putting it all together
For a fully fledged workload, you will invariably need multiple objects. We've covered how

the objects interact in the previous section, and using the example Deployment, Service

and Ingress manifests we can build a combined workload definition to create them all at

once.

3

apiVersion: apps/v1

kind: Deployment

metadata:

 name: my-nginx-deployment

 labels:

 app: nginx

spec:

 replicas: 3

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

You can combine multiple object definitions in YAML by
separating each one with three hyphens: ---

The above will create the Deployment and its three nginx Pods, the Service to provide

access to the Pods internally, and the Ingress to provide external access to the Pods via

 spec:

 containers:

 - name: nginx

 image: nginx:latest

 ports:

 - containerPort: 80

apiVersion: v1

kind: Service

metadata:

 name: my-nginx-service

 labels:

 app: nginx

spec:

 selector:

 app: nginx

 ports:

 - protocol: TCP

 port: 80

 targetPort: 80

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: my-nginx-ingress

 annotations:

 nginx.ingress.kubernetes.io/rewrite-target: /

spec:

 ingressClassName: nginx

 rules:

 - http:

 paths:

 - path: /app

 pathType: Prefix

 backend:

 service:

 name: my-nginx-service

 port:

 number: 80

the Service.

CONTINUE

Summary
In this lesson we've talked about objects in Kubernetes. We've covered:

Next we'll put that into practice and deploy an application.

4

The basic concept of an object in Kubernetes.

Some of the most common object types � Pods, Deployments,
Services and Ingresses, and how they're defined in manifests.

How we can combine multiple object definitions and deploy them at

once.

In the previous section we introduced the concepts behind Kubernetes from a cluster

standpoint as well as discussed the objects that make up an application deployment. In

this lesson we'll put those concepts into practice by creating an application in Portainer

using the form creation method.

Before we start: form vs manifest
Portainer provides two primary methods to create an application - through a form-based

approach and via a pre-created manifest. This lesson will cover the form-based

approach.

Each creation method has benefits and drawbacks. The form-based approach is a handy

way to get an application up and running when you don't have an existing configuration

to work from, or are not familiar with writing YAML manifests. By it's nature, a form-based

approach doesn't provide as much configuration flexibility as a manifest, so if you need

that additional configurability, or already have a manifest written for your application, the

manifest approach may suit better.

For now, let's dive into creating an application through a form.

Lesson 5 of 8

Deploy your first application

In order to deploy an application to a Kubernetes cluster, you
must first have a cluster. This lesson assumes you have your

START

Creating your application
Log into Portainer and select your Kubernetes environment. You'll see some information

about your environment and a summary of objects that exist within it.

1

Kubernetes environment set up and connected to Portainer.

Before we create the application itself, we want to create a namespace for it.

Namespaces are used to keep a separation between resources on the same cluster. You

can deploy all your applications into one namespace if you want, but we recommend

using namespaces to separate workloads especially when working in multi-user

environments or where resource quotas are important.

To create a namespace, first click Namespaces in the left menu.

You'll see a list of the namespaces on your environment. To create a new one, click Add

with form in the top right.

For the purposes of this tutorial we'll leave most of these settings at the default. Simply

provide a name for namespace in the Name field, then click Create namespace. Your

namespace will be created and you will be returned to the list of namespaces.

Now let's move on to the actual application creation. Click on Applications in the left

hand menu.

This page lists the applications deployed on your environment, filtered by namespace.

You can use the filter dropdown to choose the namespace to show, or choose All

namespaces to list applications across all of the cluster's namespaces.

To create your application, click on Add with form in the top right.

First, let's choose our namespace. From the Namespace dropdown, select the

namespace we just created. Under that, let's give our application a name. For this lesson,

let's use nginx-app.

Next we choose the registry and image to use to create the application. Ensure Docker

Hub (anonymous) is selected as the Registry and enter nginx:latest in the Image

field.

There are a number of other settings we can configure here including adding annotations,

environment variables, ConfigMaps and Secrets, persistent storage, resource

reservations and deployment methods. For now we'll skip past all of these and on to the

Publishing the application section.

When creating an application in Kubernetes, we are only creating the application itself.

Configuring access to that application is done through the use of a Service, which you'll

remember from our previous lesson.

In this section you'll see three types of Services you can use to publish your application:

ClusterIP, NodePort and LoadBalancer. For this lesson we'll use the NodePort option as

it requires the least amount of external configuration, but we'll go into more detail on the

options here in a later lesson. For now, select the NodePort services tab.

With NodePort, we can provide access to your application from outside the cluster on a

specified port. If you're experienced with publishing ports on Docker, this will sound

familiar. Let's create a new NodePort service by clicking the Create service button.

Here you can set annotations for the service, which we don't require. What we will need

to set however are the ports. The Container port should be set to the port that the

application runs on. In the case of nginx, this is port 80. The Service port is the port

number that the Service will use to provide access to the container port - we'll set this to

80 as well. And lastly, the Nodeport is the port that will be exposed on all the nodes of

your cluster and will route through the Service to your application. You can set a port

here, but it will need to be within the range reserved for NodePort in your Kubernetes

cluster (in most cases, from 30000 to 32767). The best bet is to leave this blank and let

Kubernetes assign a free port for you. You can also choose the Protocol here - leave this

on TCP.

Once all of this is set, you're ready to go. Click Deploy application to begin the

deployment. The application and NodePort service will be scheduled for creation and

you'll be returned to the list of applications. If you don't see yours listed, make sure you

have the right namespace selected.

Once the provision completes you should see the status icon turn green with 1 of 1

replicas created. If you now click on the name of the application you'll be taken to the

details page for the application, showing you information about the configuration.

Scroll down to the Accessing the application section and you'll see the Service we

created listed. At the end of the row you should see a Service port(s) definition - this is

where we can find the port that Kubernetes assigned to the Service. In my case it was

31517, but yours may differ.

With this information we can now check to see whether you can access your service. In a

web browser, go to:

Replace your_node_ip with the address of one of the nodes in your Kubernetes cluster,

and replace 31517 with the port that was assigned to the NodePort service.

If all has gone well, you should see the default nginx welcome page.

You'll note this is accessible on any of your cluster node's addresses on that specific port

- the NodePort service handles the routing regardless of which node you access and

http://your_node_ip:31517

sends the request to the nginx container, even if the container itself is on a different

node.

CONTINUE

Summary
In this lesson we've learned how to create a basic application through the form-based

method within Portainer. We:

In the next lesson we'll look at how we can make changes to the application after

deployment.

2

Created a namespace for our application.

Chose a name and image for our application.

Configured a NodePort Service to provide access to the application

from outside of the cluster.

In the previous lesson we created our first application - a nginx deployment - using the

form-based approach in Portainer. In this lesson we'll look at how we can edit our

deployed application. We will:

This lesson assumes you have completed the previous lesson and have an application

called nginx-app on your cluster.

START

Lesson 6 of 8

Editing your application

View the current configuration of the application1

Enter edit mode and make some configuration changes2

Deploy the updated configuration and confirm it has worked as
expected

3

1

Examining the current configuration
Before we start making changes, let's first have a look at what information is displayed

for the current application config. In Portainer, select your Kubernetes environment then

select Applications in the left hand menu. Select the namespace you created the nginx-

app application in from the Namespace dropdown (if it isn't already visible) then click the

nginx-app name in the application list.

This is the Application details page, which shows you the current configuration for the

application you selected. The first section consists of four tabs:

Application, which shows general information about the application

including the name, stack, namespace, type and status as well as

the creator, creation date and creation method and any notes

attached to the application,

Placement, which details any placement constraints and

preferences applied to the application,

Below this initial section you'll find detail on application access (via Services), auto

scaling, environment variables, ConfigMaps and Secrets, and data persistence. In our

example application, much of this is not set. Here is where you'll also find buttons to edit

the application, perform a rolling restart, redeploy, or roll back to a previous config.

Events, which lists any events related to the application,

YAML, which contains the raw YAML configuration of your

application.

And finally, below this section you can see a table detailing the containers that make up

the deployment, with detail on each container.

Return to the middle section of the details page and click Edit this application, and you'll

be taken to edit mode.

CONTINUE

Making some changes
We're now at the Edit application page for your application. You'll note this form looks

somewhat similar to the form we used when creating the application, so we won't go into

detail on what each field means. Instead, let's jump in and make some configuration

changes to our deployment.

Changing the image
First off, let's imagine that we want to, instead of the latest image, use a specific version

of nginx for our deployment. In the Image field, change nginx:latest to nginx:1.24.

This will mean when we redeploy the application, the Pods will be recreated to use the

nginx:1.24 image instead of nginx:latest.

Add an environment variable
Let's also imagine that our application needs us to set an environment variable. Under

Environment variables, click the Add environment variable button. In the fields that

appear, set the name to MY_ENV_VAR and the value to myvalue. This will create an

environment variable called MY_ENV_VAR, set to myvalue.

2

Configure resource reservations
Resource reservations let you specify minimum amounts of memory and CPU to be

"reserved" for use by your applications. These resources are unavailable to other

workloads on your cluster, and are applied on a per-instance basis. For this example, let's

reserve 256MB of memory and half a CPU core for each instance of our app. Either using

the sliders or by manually entering values in the boxes, set the Memory limit to 256 and

CPU limit to 0.5.

Add more instances
Finally, let's create some replicas of our application. In the Deployment section we should

already be set to Replicated, and below this setting you'll see Instance count is set to 1.

This means there will only be a single instance of our nginx application running on our

cluster. We want to provide for more concurrent connections, so let's set Instance count

to 3, which will ensure that 3 instances of the application will be running at all times.

You'll also note that when you adjust the instance count, you'll see a message indicating

the total resource reservation across all instances.

Checking our work
Scroll down to the bottom of the page and you'll see a Summary section. This lists the

changes that will be made to your application configuration when it is updated. In our

case, you should see that we will:

Check this all looks good, then click the Update application button to begin the update.

You will be asked to confirm the update - click Update to do so.

Update the Deployment named nginx-app (confirming we're

working on the right application!�

Set the memory limit to 256M (per instance)

Set the CPU limit to 0.5 (per instance)

You'll be returned to the Application details page where you can view the progress of

your update.

CONTINUE

Examining our updated application
When you're first returned to the Application details page after updating, you may see the

status of your update still applying. For example, in the Status field you may see the

status listed as Replicated 0 / 3. You can also scroll to the Application containers

section and see three containers now listed, potentially with their status set to Waiting.

You can click the refresh icon next to Application details to refresh the page while the

update is applied, and you can also check the Events tab for updates as to the

deployment progress.

3

Once the update completes, you can check to make sure the changes applied as

expected. You should see the Status is now Replicated 3 / 3, and new Resource

reservations item is listed with the CPU and Memory reservations we set.

In the second section you'll see our environment variable set:

And in the Application containers section, you'll see the three containers that now make

up our deployment, their status, and the node they're located on. You'll also note here

that the Image for each container is now nginx:1.24 as we requested.

And of course you can confirm the application is still working by going to:

in your web browser (adjust the IP and port as required).

http://your_node_ip:31517

CONTINUE

Summary
First we created our application, and now we've edited it. We have:

We only covered a subset of the available settings in this lesson - we'll cover more in

later lessons and you'll find additional detail in our documentation. In the next lesson we'll

look at how we can deploy more advanced or predefined configurations from a manifest.

4

Checked the current configuration of the application and then
proceeded into editing the application

Changed the image our application uses, set an environment

variable, configured resource reservations and increased the

number of instances

Deployed our changes and checked they applied successfully.

As we covered in our last lesson, Portainer provides a form that you can fill in to deploy

your application on your Kubernetes environment. But if you have a more complex

deployment to create or have an existing manifest for your application, you can use that

instead.

In this lesson we will learn how to:

START

Lesson 7 of 8

Deploying via manifest

Create a manifest to define an application1

Deploy the manifest to create the application2

Edit the application's manifest after deployment3

1

Creating our manifest
When creating an application from a manifest, you will of course need to have a manifest

to start with. A manifest is a YAML document that specifies the objects that make up your

application. We talked about the different types of objects in the Objects in Kubernetes

lesson.

For this lesson, let's replicate what we did in the last lesson (creating an application using

the form) but as a manifest - that is, a nginx deployment with 3 replicas along with a

NodePort Service for external access. Here's that setup, in YAML�

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-manifest

 labels:

 app: nginx-manifest

spec:

 replicas: 3

 selector:

 matchLabels:

 app: nginx-manifest

 template:

 metadata:

 labels:

 app: nginx-manifest

 spec:

 containers:

 - name: nginx-manifest

 image: nginx:latest

 ports:

 - containerPort: 80

apiVersion: v1

kind: Service

metadata:

 name: nginx-manifest-service

 labels:

Most of this should be straightforward based on what we've learned so far - if you need a

refresher on how object definitions work, have a look at the Objects in Kubernetes lesson

from earlier. One change to note is that we're using the name nginx-manifest instead

of nginx-app - this is so that we can deploy it in the same namespace alongside the

nginx-app we created in the previous lesson without running into any conflicts.

Now that our manifest is ready, let's deploy it!

CONTINUE

 app: nginx-manifest

spec:

 type: NodePort

 selector:

 app: nginx-manifest

 ports:

 - protocol: TCP

 port: 80

 targetPort: 80

2

Deploy our manifest
To create an application from a manifest, from Portainer select Applications in the left

hand menu then click the Create from manifest button in the top right.

You'll be taken to the Advanced deployment page where you can begin the provision.

First off, we'll need to select a namespace and provide a name for the application. From

the Namespace dropdown, select the namespace you want to use (it can be the same as

the one we used previously for the nginx-app deployment) and enter a Name - we'll use

nginx-manifest.

Next we choose a build method. This is how we specify the source of our manifest file.

There are four options to choose from:

We want to use the Web editor option for this example, so select that.

Now we're presented with a web editor field we can paste our manifest into. Go ahead

and do so now.

Web editor
This option lets you type or paste a manifest file directly into a text

field, and is the option we'll use for this example.

URL
This option lets you specify a URL where your manifest resides.

Portainer will retrieve the manifest from that URL and deploy it.

Repository
This option lets you specify a Git repository that contains your

manifest. Deploying from a repository also provides some additional

automatic update functionality over the other options.

Custom template
This option lets you select a predefined custom template to base

your deployment from. Custom templates can be created by you for

future use like this.

When you're ready, click the Deploy button to begin the deployment. You'll now be

returned to the application list while the deployment completes. You can check the status

in the Status column or click the application name for more details.

Since we didn't explicitly define a port to use for our NodePort service, one would have

been assigned automatically. You can find this in the application details page under

Accessing the application. In my case, this was port 32008.

You can check your deployment worked by opening the URL in your browser:

Replace your_node_ip with an IP address of a node in your Kubernetes cluster, and

32008 with the port that was assigned to the NodePort service.

CONTINUE

Making some changes
So we've deployed our manifest, but let's imagine we want to make some changes. Like

we did with the form-based provision in the last lesson, let's set an environment variable

and some resource limits.

http://your_node_ip:32008/

3

From the Applications list, click on the name of your application (in our case, nginx-

manifest). You'll be taken to the Application details page. Scroll down and click the Edit

this application button.

Since this application was created from a manifest using the Web editor, we're taken to a

page where we can make changes to that manifest.

Let's add an environment variable definition to our code:

and our resource limits:

env:

- name: MY_ENV_VAR

 value: myvalue

resources:

 limits:

 cpu: 0.5

 memory: 256M

 requests:

This matches the configuration we used for the form-based setup. Both of these

configuration blocks go in the spec section for the nginx container under the nginx-

manifest deployment. The full adjusted code should look like this:

 cpu: 0.5

 memory: 256M

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-manifest

 labels:

 app: nginx-manifest

spec:

 replicas: 3

 selector:

 matchLabels:

 app: nginx-manifest

 template:

 metadata:

 labels:

 app: nginx-manifest

 spec:

 containers:

 - name: nginx-manifest

 image: nginx:1.24

 ports:

 - containerPort: 80

 env:

 - name: MY_ENV_VAR

 value: myvalue

 resources:

 limits:

 cpu: 0.5

 memory: 256M

 requests:

 cpu: 0.5

 memory: 256M

Update the web editor field with the above configuration, and when you're ready click the

Update the application button. You'll be asked to confirm the update - do so.

Your updated configuration will now be pushed to your cluster, and the application will be

reconfigured with your changes. As always, you can check the status of this from the

Applications list and the details page for the application itself. You can also check the

apiVersion: v1

kind: Service

metadata:

 name: nginx-manifest-service

 labels:

 app: nginx-manifest

spec:

 type: NodePort

 selector:

 app: nginx-manifest

 ports:

 - protocol: TCP

 port: 80

 targetPort: 80

Events tab in the application details to see the actions that were taken as part of the

reprovisioning.

CONTINUE

Summary
In this lesson we've looked at how we can deploy an application from a manifest file

directly, rather than using the form-based approach. We:

4

Created a manifest file for our nginx deployment

Congratulations! You now know the basics of deploying on Kubernetes with Portainer. In

the future we'll be adding additional lessons that will dive deeper into some of the other

configuration object types - namely storage and networks.

Used Portainer's Web editor to supply our manifest file and deploy it

on our cluster

Edited the manifest file within Portainer to adjust the application
config and redeployed it with the new options.

Congratulations, you've now completed the Deploying on Kubernetes with Portainer

course!

In this course we've looked at the basics of deploying on Kubernetes, including:

Lesson 8 of 8

Summary

An introduction to Kubernetes, including what it is (and isn't)

The anatomy of a Kubernetes cluster

The objects that make up a Kubernetes deployment

Creating and editing an application through the form-based

approach in Portainer

Creating and editing an application using a manifest in Portainer

This is intended as an introduction to get you started with using and deploying on

Kubernetes with Portainer, and doesn't cover every possible object, configuration and

nuance of the platform. From here you should be able to dive into using Kubernetes for

your deployments with knowledge of the concepts and processes that make up your

clusters.

