
This course will guide you through a best practice deployment of Portainer on your
production infrastructure, covering recommended configurations, environment
architecture, and security considerations and setups.

Introduction

A best practice example

Choosing your architecture

Preparing your management environment

Deploying Portainer Server

Initial setup

Securing your installation

Configuring access

Adding environments

Portainer Best Practice Installation Guide

Managing environment access

Adding registries

Securing your environments

Summary

This guide is intended to walk you through our recommended Portainer configuration for

use in a production environment. We will cover how to choose and prepare your

management environment, how to deploy Portainer Server to that environment and the

initial setup. We will then work through our best practice steps for configuring and

securing both your management environment and your connected environments,

including user authentication and access configuration, role assignments and other

considerations.

By the end of this guide you should have a Portainer configuration ready to go for

production use.

Lesson 1 of 13

Introduction

Requirements and prerequisites
This guide makes certain assumptions about both your environments and your

knowledge. Specifically, we assume that you have root / admin access to the

environments you're working on, as you will need this to deploy Portainer. We also

assume you have functional knowledge of the containerization platforms that you are

using, whether that be Docker, Swarm, Kubernetes or a combination of the above, as

there are certain prerequisites and configuration steps that should be undertaken to

prepare your environments ahead of deploying Portainer.

While you can jump around within this guide as you need, this guide also assumes that

you will be deploying your setup as you work through it, and sections will assume that

you have followed the sections that came before.

One size fits most
There is no "one true way" of configuring Portainer for production; this guide suggests a

recommended, best practice approach to your deployment and may not work for every

organization. However, the steps covered here should be considered carefully when

deploying in production to ensure you have a secure and performant setup going

forward.

Before we start getting into the detail of your deployment, let's look at an example

production deployment of Portainer. In this example, we have Portainer managing multiple

environments from one management interface on a management cluster. Authentication

is provided by an external OAuth provider, the Portainer UI is secured with SSL and IP

whitelisting for access. The remote environments are managed with the Portainer Agent

and Edge Agent where relevant, with firewalls configured for the necessary access only,

and the Portainer Server configuration is backed up to an S3 bucket daily.

Lesson 2 of 13

A best practice example













S3 Backups

The Portainer configuration is backed up automatically to an S3 bucket. Portainer supports both AWS S3
buckets and S3-compatible providers such as MinIO and Backblaze.



Portainer Agent

The Portainer Agent runs on the managed environment, providing a conduit for the Portainer Server to act
upon the environment.

For Kubernetes environments, the Agent runs on one of the nodes in the cluster, leveraging the Kubernetes

API for access.



Portainer Agent

The Portainer Agent runs on the managed environment, providing a conduit for the Portainer Server to act
upon the environment.

For Docker Swarm environments, the Agent runs as a global service across all nodes in the cluster.



Portainer Agent

The Portainer Agent runs on the managed environment, providing a conduit for the Portainer Server to act
upon the environment.

For Docker Standalone environments, the Agent runs as a container on the node alongside your applications.



Management environment

The Portainer Server is running on an independent management environment from the workloads, ensuring
that access is always available to the managed environments even if one of them is offline.



OAuth Provider

Authentication is provided by an external OAuth provider such as Microsoft Azure AD, Google or GitHub,
allowing for centralized user management across the organization.



When building a production-ready Portainer deployment, the first crucial decision you will

need to make is how to architect your management infrastructure. There are two basic

options:

In this lesson we will cover each of the above options in detail, and look at the pros and

cons of each approach.

START

Lesson 3 of 13

Choosing your architecture

Deploy the Portainer Server on a dedicated management

environment (recommended).
1

Deploy the Portainer Server within one of the environments it will
also manage.

2

Recommended: A dedicated management environment

While it is possible to run Portainer alongside your workload in a containerized environment,

for production deployments we highly recommend setting up a dedicated management

environment that runs just the Portainer Server and no actual production workloads. Doing

so means the management system is able to manage all your application environments

without being affected by them.

For example, if you were running the Portainer Server on a node of your application

environment and that node went down, you wouldn't be able to use Portainer to manage

that node or any other nodes or environments. With a separate node, you can manage your

deployments without worrying about this scenario.

By the same token, if your management environment went down, it wouldn't affect your

production environments in this configuration. Your applications would continue to work

unaffected, and once you are able to bring your management environment back online you

could pick things right up where you left off.

Step 1

There are also potential security improvements with this approach. With a dedicated

management environment, your Portainer users will never be directly connecting to your

production environments in any way; all activity will be routed through Portainer.

Management access would only need to be configured on the management environment,

with the Portainer Agent handling the communication between the production

environments and the management interface.

The primary drawback with this configuration is that it requires you to set up a separate

management environment, which may incur extra costs and potential management and

maintenance overhead. In some situations this may not be desirable or feasible, in which

case the Portainer Server can be run on an existing environment.

Alternative: Install Portainer Server within one of the
environments it will also manage

If running a dedicated management environment is not an option, you can instead run

Portainer Server alongside your workflow on an environment it will also manage. This is our

recommended approach for development or testing scenarios as it uses less resources to

do so than running a dedicated environment, but there are drawbacks to consider with this

approach.

Firstly, when running alongside your workflow, there is the potential for your access to be

hampered by your deployments. If your node that is running the Portainer Server is under

heavy load from your application, this may limit the ability to use Portainer to manage it.

While we build Portainer to be as lean and performant as possible, it does require some

resources to function and if those resources are unavailable, performance may be

impacted.

Step 2

CONTINUE

Summary
In this lesson we have covered the two options to consider when setting up your

Portainer architecture: dedicated or shared. For production environments we recommend

the use of a dedicated management environment to provide:

Additional resiliency in the case of node outages

Separation of access between management and production

Minimal impact from production workloads on the ability to manage environments

A dedicated management environment may mean:

Additional costs from running a dedicated management node

Additional maintenance overhead for the management node

In addition, if the node running the Portainer Server goes down, you will have no access to

Portainer to help troubleshoot the issue until that node comes back up. In a development

environment this is less of a concern, but could be a significant issue for production

deployments.

In order for your users to manage your environments with Portainer, they will need to be

able to log into Portainer. This is generally done through our web interface, access to which

would need to be configured on your firewall. Opening a web management port on a

production environment may be a security risk, and would not be required if the Portainer

Server was running on a separate environment.

If in your situation the drawbacks outweigh the benefits, you can instead run the

Portainer Server within one of the environments it will also manage.

In future lessons, we will cover the requirements and installation process for both options.

Now that we have decided on our management environment architecture, we can start

preparing that environment for the Portainer deployment. While Portainer is designed to

be run (almost) anywhere, there are some basic prerequisites for deployment as well as

some extra points to consider for a production-ready deployment.

In this lesson we will cover the basic requirements of the Portainer Server, discuss the

options when it comes to orchestrator choice, as well as cover the important persistent

storage consideration.

START

Basic requirements
The Portainer Server runs as a container within a containerized environment, allowing for

easier configuration and maintenance. At present, Portainer Server supports running on

the following containerization platforms:

Docker Standalone

Lesson 4 of 13

Preparing your management environment

1

Docker Swarm

Kubernetes

The Portainer Server installation process does not install or configure the containerization

platform for you, so this will need to be preinstalled and configured beforehand. You can

find the most up to date detail on the versions of the platforms we support in our

documentation.

Regardless of your chosen platform, to install Portainer Server you will need the following:

Root, administrator or cluster admin access to the environment where you want to
install the Portainer Server instance.

Persistent storage on (or connected to) the environment for the Portainer Server's
database and other files.

We will cover persistent storage in more detail later in this lesson.

CONTINUE

Docker vs Swarm vs Managed Kubernetes

2

This primarily applies to the dedicated management
environment architecture. If you are running Portainer Server

https://docs.portainer.io/start/requirements-and-prerequisites

Choosing the platform for your management environment can boil down to the following:

Outside of these points, there are also platform-specific items to consider.

Familiarity

How familiar are you and your team with the platform? While

Portainer is intended to help you manage your environments, some
familiarity with the basics of the chosen platform is helpful. For

example, if your team has no experience with Kubernetes then it

may not be the best choice for your management environment.

Availability

What kind of resources do you have available to run your

management environment? A management environment is generally

going to be significantly smaller (in terms of resourcing) than your
production environments, but you may want to consider the number

of users that will need to be accessing the management

environment, where those users are connecting from, and how

many environments you intend to manage from the Portainer Server
instance. This can affect the amount of resources you will need for

your management nodes.

within one of the environments it will also manage, this decision
has likely been made for you already.

Docker Standalone

A Docker Standalone environment is one of the simplest configurations for a management
environment, and is easy to set up and maintain. However, by it's nature Docker Standalone is not
multi-node, and while Portainer Server is not multi-node compatible (more on this later) it may be
worth considering this when deciding on a management platform. On the other hand, as a purely
management node, the redundancy that a multi-node environment provides may be less of a
concern than it would be for a production workload, but do consider what the impact would be on
your workflow (for example, if Portainer is to be a part of your CI/CD pipeline) when making a
decision on redundancy.

Docker Swarm

With Docker Swarm, the Portainer Server is deployed as a service on the Swarm cluster (by default
restricted to manager nodes). Within a sufficiently sized and configured cluster (3 or more manager
nodes), this does provide additional fault tolerance as compared to a Docker Standalone
deployment, but does come with it's own considerations.

While the Portainer Server instance is not fully multi-node compatible (more on this later), in a
multiple node environment it is conceivable that the Portainer Server container could be
running on different physical nodes. As such, the persistent storage used by Portainer needs
to be accessible from all nodes where Portainer could potentially be running. We will cover
persistent storage in more detail later in the lesson.

A common issue when running Docker Swarm is a misconfigured overlay network, preventing
the services within the swarm from communicating between nodes. Ensure that the overlay
networking is configured and working correctly, including DNS resolution between nodes.

Managed Kubernetes

On a Kubernetes environment, the Portainer Server container is deployed as a single replica pod in
a Portainer-specific namespace, and exposed via either ingress, node port or load balancer as
chosen during deployment. We highly recommend using a managed Kubernetes cluster rather than
a self-deployed and managed cluster due to the complexity of the initial setup and configuration of
Kubernetes, though a non-managed cluster is also an option.

CONTINUE

Portainer and multiple nodes
At present, the Portainer Server is not fully multi-node compatible in that it can only run

on a single node at any given time. In multi-node environments with correctly configured

failover and persistent storage, the Portainer Server is fault tolerant, but there is no

current capability for the Portainer Server to be running on more than one node at once.

We are however actively looking at how we can improve this in the future.

Your Kubernetes cluster will need to have:

The role-based access control (RBAC) addon installed and configured. This is to allow for
Portainer's multi-user capabilities and permissions.

A default StorageClass configured. This is so the Portainer Server can configure persistent
storage for the database and configuration. Bear in mind that in some Kubernetes
deployments, the default StorageClass simply creates hostPath volumes, which could be
problematic if the Portainer Server pod is redeployed on a different node to where the volume
was created.

If you want to use metrics within Portainer (highly recommended), the metrics server addon
will also need to be installed.

3

CONTINUE

Persistent storage
The Portainer Server requires a persistent storage location in order to store the database

it uses for the configuration, as well as any supplemental files such as compose files,

YAML manifests and the like. Without this storage, the Portainer configuration will be lost

and you would be unable to use Portainer to manage your environments. As such, we

recommend taking extra care with your choice of storage mechanism. We also

recommend doing this at the infrastructure level, in order to reduce the possibility of

compatibility issues between your containerization platform and your choice of storage.

In many cases, an off-node storage location is preferable to on-node storage. A common

example of this is the use of NFS mounts on the node from an external NFS server,

though there are other options available. This can (along with backups, which will be

covered in a later lesson) ensure that your Portainer configuration remains intact in case

of a failure in your management environment.

Whichever option you choose, when you are deploying on a multi-node cluster, ensure

that the storage is available on all the nodes and in the same way (with the same paths

and permissions) on all nodes.

CONTINUE

4

Summary
In this lesson we've discussed what you need to think about when preparing your

management environment, whether that be a dedicated management environment or

within one of the environments it will also manage.

You should now:

You're now ready to install Portainer! The next lesson will get you started with this

process.

Know which containerization platform you will be using (Docker

Standalone, Docker Swarm or Kubernetes), along with any platform-

specific requirements you might have.

Have root or administrator access to your containerization platform,
in order to begin the installation process.

Have knowledge on how Portainer uses persistent storage, and a

plan on how to implement this on your platform.

Understand the limitations around multi-node support in Portainer
and how that may affect your deployment decisions.

Congratulations, you are now ready to install Portainer! Previous lessons have covered

the things you need to think about when it comes to planning your Portainer installation,

and now that we've done that we're ready to move on to the real thing.

Below you will find links to our installation instructions in our documentation for each of

our supported management environments - Docker Standalone, Docker Swarm and

Kubernetes. Click the button then choose your platform, and follow the provided

instructions.

Docker Standalone
If you are installing Portainer on a Docker Standalone environment, start here.

DOCKER STANDALONE

Docker Swarm
For Docker Swarm environments, start here.

DOCKER SWARM

Kubernetes
For Kubernetes environments (managed or otherwise), start here.

Lesson 5 of 13

Deploying Portainer Server

https://docs.portainer.io/start/install/server/docker
https://docs.portainer.io/start/install/server/swarm

KUBERNETES

Once you have completed the installation, you're ready to move onto the initial setup of

Portainer.

https://docs.portainer.io/start/install/server/kubernetes

Now that you have deployed the Portainer Server, there are a few initial setup steps to

complete:

This lesson covers these initial setup steps.

START

Lesson 6 of 13

Initial setup

Setting a secure administrator user and password.1

Adding your Portainer license.2

Connecting to your local environment.3

1

Setting a secure administrator
When you first connect to the Portainer UI after installation completes, you will be asked

to set up an initial administrator user. This is an important first step, even if you intend to

use an external authentication provider, as it can provide a fallback access method if your

external auth provider is unavailable or has configuration issues.

Once the Portainer Server container is started, there is a 5
minute period within which you will need to create your initial
administrator user. If a user is not created within those 5
minutes, the container will stop responding and will need to be
restarted.

https://portal.portainer.io/knowledge/i-just-installed-portainer-but-i-cant-access-the-ui-how-do-i-fix-this

We recommend choosing a unique username other than the default of "admin". While this

is optional, having a non-default username is another layer of security.

Enter a strong, unique password to use for the administrator account. The minimum

length on a fresh installation of Portainer is 12 characters, and the longer the better. We

recommend the use of either a passphrase or a complex mix of uppercase, lowercase,

numbers and symbols.

Enabling or disabling the collection of statistics

We use a tool called Matomo to collect anonymous information about how Portainer is

used. We recommend enabling this option so we can make improvements based on

usage, but this is entirely up to you. For more about what we do with the information we

collect, read our privacy policy.

If you change your mind later, you can easily update this option under Settings in the

Portainer UI.

CONTINUE

Adding a licence
Once an administrator user has been added, the next step in the initial setup is to add

your Portainer license. You should have received this when signing up - if you haven't yet

signed up you can click the "Don't have a license?" link to get a trial license or contact our

sales team for purchasing. If you have already signed up for a license but haven't received

it, reach out to our success team for help.

2

https://www.portainer.io/privacy-policy
https://www.portainer.io/contact-sales
mailto:success@portainer.io

Portainer licenses are limited to a set number of nodes, so when purchasing a license you

will need to be mindful of how many nodes are in your infrastructure.

What counts as a node?
As we describe in our knowledge base:

A "node" can be simply described as a "server" (whether this is an actual physical

server, a VM, a Raspberry Pi, your desktop or laptop, an industrial computer, or an
embedded compute device) that is capable of running containers (via Docker,

Kubernetes or another orchestrator) which is either running the Portainer Server or

is under the management of a Portainer Server installation. ”

In production environments, you are likely to be working with clustered environments

such as Docker Swarm or Kubernetes, where there are multiple nodes within each

environment. Each of these nodes would count as a node for licensing purposes. It is also

important to consider the Portainer Server environment when calculating your node

count, as it too is running Portainer.

“

https://portal.portainer.io/knowledge/what-is-a-node-for-licensing-purposes

Let's look at our example setup from the beginning of the course:









Management environment (1 node)

The management environment is a single Docker Standalone environment in this example, so counts as 1
node for licensing.



Production environment (3 nodes)

The production environment's Kubernetes cluster is made up of 3 nodes, so counts as 3 nodes for licensing.



UAT environment (3 nodes)

There are 3 nodes in the UAT Docker Swarm cluster, which counts as 3 nodes for licensing.



Development environment (1 node)

The development node in this example consists of a single Docker Standalone installation, so counts as 1
node.

In this example, we have a management environment that is running a single node Docker

Standalone environment to host the Portainer Server container. We are using Portainer to

manage three other environments; our Development, UAT and Production clusters, each

with one, three, and three nodes respectively. Combining this with our single node

management cluster, we get 1 + 1 + 3 + 3 nodes, resulting in 8 nodes total for licensing

purposes.

Your particular setup is likely to differ from the above example, but it should give you a

good place to start from. You can find a more detailed run-down of how nodes pertain to

licenses in our knowledge base.

Planning ahead vs starting small



https://portal.portainer.io/knowledge/what-is-a-node-for-licensing-purposes

If you're just starting out with your containerized environment, you may want to start with

a smaller license count and work your way up. You can always purchase additional node

licenses from us if you need to expand. Alternatively, if you know the size of your

infrastructure and want to prepare, that is doable as well. You don't need to consume all

of your node licenses in your initial setup.

If you're at all unsure about how many nodes you need for your infrastructure or if you

have any questions on licensing, you can reach out to our team for help.

CONTINUE

Connecting to your environments
Once you have added your license, you will be taken to the Portainer UI and presented

with the initial setup environment wizard. The Portainer installation will have detected

your local environment and preconfigured it for you, and you now have the option of

adding additional environments to manage.

For a production deployment we recommend selecting Get Started here and proceeding

to the main Portainer interface, where we will make some additional configuration

changes before adding additional environments to manage.

CONTINUE

3

https://www.portainer.io/contact-sales

Summary
In this lesson we've completed the initial setup of our Portainer Server installation,

including:

While technically you can start using Portainer right away (especially if you're running

Portainer on an existing environment and it is the only environment you intend to manage)

we highly recommend continuing to the next lessons where we will discuss how to secure

and configure your Portainer setup, add new environments, set up external

authentication, registries and backups, and more.

Creating an initial administrator user with a strong and unique

password.

Adding the license key (and signing up for one if you hadn't

already).

Connecting with the local environment in preparation for further

configuration.

Congratulations! Your Portainer Server instance is now installed and running on your

environment. While you're technically good to go now, we recommend following a few

more steps to get you running smoothly. The first of these is to ensure your Portainer

Server installation is secure.

In this lesson we will cover how to secure your Portainer Server installation, including:

START

Lesson 7 of 13

Securing your installation

Adding your SSL certificate and chain to Portainer to help secure
access to the Portainer interface.

1

Configuring your firewall and adding access restrictions to the

Portainer server interface and tunnel ports.
2

Configuring regular automatic backups of the Portainer Server
configuration to an S3 (or S3-compatible) bucket.

3

Add SSL certificates
When Portainer is installed, by default we generate self-signed SSL certificates to

encrypt access to the web interface. While self-signed certificates provide the same level

of encryption as trusted certificates, they do generally throw a warning in your browser.

As such, we recommend replacing the self-signed certificates with trusted certificates

signed by a recognized certificate authority.

Selecting your certificate provider and purchasing or generating your certificates is

outside of the scope of this lesson, but should be relatively straightforward. Once you

have obtained your certificate, you will need to ensure you have:

The intermediate certificates, sometimes referred to as chain certificates or a CA bundle,

are needed in order to provide the signing path between your certificate and the root

certificates trusted by web browsers. Your CA should supply these, but if not you can use

What's My Chain Cert to generate these for you.

Once you have all three components, the first step is to merge your certificate file and

intermediate certificates into a single file for use by Portainer. The certificate itself should

come first in the file, followed by the intermediate certificate bundle.

1

The certificate file in PEM format.

The private key file for the above certificate, also in PEM format.

Any intermediate certificates provided by your certificate authority

(CA).

https://whatsmychaincert.com/

Now we're ready to update the certificate in Portainer. Log in to your Portainer installation

as an admin user, then select Settings in the left hand menu and scroll down to the SSL

certificate section. In this section you'll see a toggle labeled Force HTTPS only as well as

two buttons labeled Select a file - one for the SSL/TLS certificate and one for the private

key. Leave the Force HTTPS only toggle off for the time being - we will talk about this

later. For now, click the first Select a file button and browse to your merged certificate

and intermediate cert bundle. The click the second Select a file button and browse to

your private key file. Once you've done this, you should see something similar to the

following (your filenames may differ):

When you're happy with your selections, click Apply changes to update your SSL

configuration.

This will restart the Portainer service to apply the change, and
will require you to log back in to Portainer.

Test your changes!
Before we go any further, let's make sure that we've configured SSL correctly. Log out of

Portainer and reload the login page in your web browser. You should see the browser

using your newly uploaded SSL certificate. Log back in to test that it works as expected.

If you do run into any errors here you can log in via the HTTP port if you have it exposed.

If not, this knowledge base article should help you enable HTTP access.

Optional: Force HTTPS only
Once you have confirmed your SSL configuration is working, you may want to enable the

Force HTTPS only toggle we saw earlier. This stops Portainer from listening on the HTTP

port entirely, requiring that HTTPS be used for all access. We only recommend doing this

when you have fully tested HTTPS access, and where all agents and remote systems

connecting to the Portainer interface will use HTTPS.

If you have enabled this and run into issues accessing Portainer, this knowledge base

article provides a way to re-enable HTTP access.

CONTINUE

2

https://portal.portainer.io/knowledge/i-enabled-force-https-only-and-now-im-locked-out-of-portainer-how-do-i-get-back-in
https://portal.portainer.io/knowledge/i-enabled-force-https-only-and-now-im-locked-out-of-portainer-how-do-i-get-back-in

Firewalling and access restriction
Another important element of securing your Portainer installation is restricting access to

the Portainer Server instance. We generally recommend doing this through the use of a

firewall or a similar access control method. Your implementation process will depend

highly on your particular IT infrastructure, but the following should give you a good place

to start.

Port requirements
The Portainer Server needs the following incoming ports open for access:

For outgoing access, the Portainer Server may use:

TCP port 9443 (or 30779 for Kubernetes with NodePort) for the

web UI, Edge Agent communication, and the Portainer API.

TCP port 8000 (or 30776 for Kubernetes with NodePort) for the

Edge Agent tunnel. Depending on your configuration, this may be
optional.

Portainer Business Edition also checks in with our license server (license.portainer.io)

periodically over HTTPS. However, if Portainer cannot reach the license server (for

example if it was running in an airgapped environment with no internet access) it will

continue to work as normal.

IP access restriction
In addition to restricting open ports, we highly recommend implementing IP whitelisting

on your Portainer Server installation in order to lock down access to only the IP addresses

that you know need to connect. This may include:

TCP port 80 and 443 for accessing external resources via HTTP or

HTTPS respectively. These could be remote Git repositories

containing your deployments, application templates, Helm charts,
image registries, external authentication providers, S3 backups, and

the like.

Any other specific port required for access to an external resource

as covered above. For example, you may run your remote registry
on port 5000.

Users that need to log into the Portainer web interface.

Remote Edge Agents that will connect to Portainer.

Systems that will invoke webhooks on your deployments (for
example deployment automation through CI/CD pipelines).

Systems that will interact with the Portainer API.

Remember to test that everything is working as expected after making changes to

access, as you don't want to accidentally lock yourself out!

CONTINUE

Configure backups to S3
Portainer supports backing up its configuration both manually to a downloadable file as

well as automatically to a remote S3 or S3-compatible bucket. This backup covers the

configuration of Portainer itself - users, roles, environments, registries, stack files - but

notably does not include containers, volumes, or other deployments. We recommend

configuring separate backup systems for your application data.

The Portainer backup can be used to restore a Portainer Server setup in the case of a

failure of your management environment, getting you back up and running as quickly as

possible. As such, we highly recommend configuring this to run automatically.

To configure backups to a S3 or compatible bucket, you will need:

3

We recommend creating an access key specifically for Portainer backups, with

permissions for only the bucket you intend to use for your backups.

Once you have your bucket details and access key, you're ready to set up your backups.

Log into Portainer as an admin user, then select Settings in the left hand menu and scroll

down to the section labeled Back up Portainer. Since we want to back up to a S3 (or S3-

compatible) bucket, select the Store in S3 option.

A bucket to store your backups. Portainer supports AWS S3 as well

as S3-compatible systems (for example, MinIO and Backblaze B2).

An access key for your bucket. This consists of two parts: an access
key ID and a secret key.

Portainer does not do any cycling or rotation of backups. We
recommend periodically checking on the backups in your S3
bucket and manually removing old backups as required, as
depending on your configurations these backups can get fairly
sizeable.

First we want to configure the schedule. We recommend running daily backups, though

feel free to adjust this to suit. Toggle on the Schedule automatic backups option and a

new field labeled Cron rule will appear. Enter your backup schedule in cron format in the

box. For example, if you wanted to run your backup at 3am every day, you would enter:

Next we'll provide the access details for our bucket. Fill in the Access key ID and Secret

access key fields with your access key and corresponding secret key respectively. If you

0 3 * * *

https://crontab.guru/

are using AWS S3 or your S3 provider requires it, enter the region that your bucket is in

under Region and the name of your bucket in Bucket name. If you're using a S3

compatible host rather than AWS S3, provide the hostname (and port if relevant) in S3

compatible host.

You can also optionally set a password on your backups by toggling on Password protect

and entering a Password. You will need this password to restore your backup, so make

sure you keep it safe.

When you've got everything set up as desired, click Save backup settings to apply the

configuration.

CONTINUE

Summary
In this lesson we've worked through some important first steps in securing your Portainer

instance. We have:

In our next lesson we will cover setting up your users and teams with access to Portainer.

Replaced the default self-signed SSL certificate with a trusted

certificate.

Configured access restrictions for the ports that Portainer uses as

well as whitelisting IP access to Portainer.

Set up regular automatic backups of the Portainer configuration.

With Portainer Server secured, we can now move on to configuring access for your users

and teams to Portainer. How you do this will depend greatly on your specific systems and

requirements, but there are some points to consider as you prepare and configure.

In this lesson we will cover:

START

Lesson 8 of 13

Configuring access

The authentication methods that Portainer supports, and which we

recommend.
1

Setting up teams for your users.2

Configuring your external authentication provider in Portainer
(recommended); or:

3

Creating users in Portainer for use with internal authentication4

Authentication methods
There are two basic modes supported by Portainer for user authentication:

Using an external authentication provider is our recommended approach for production
deployments. It is highly likely that your organization already has an authentication provider, so
leveraging that instead of maintaining a separate system has benefits from an admin perspective, if
nothing else.

Portainer currently supports the following authentication methods:

LDAP

Microsoft Active Directory

OAuth

1

External authentication using a third-party authentication provider
(highly recommended).

1

Internal authentication with users and groups stored within the

Portainer database.
2

E X T E R N A L A U T H P R OV I D E R I N T E R N A L A U T H E N T I CAT I O N

If you don't have an existing authentication provider that you wish to connect with Portainer, you
can alternatively use Portainer's built-in user and group system. This will mean managing your users,
passwords and groups directly in Portainer rather than a centralized location across your
organization.

It is also important to note that Portainer's internal authentication is more limited in features as
compared with external auth providers. For example, it does not support two-factor authentication,
password expiration policies or the ability to lock user accounts without removing them. Unless you
have no other choice, we highly recommend avoiding using internal authentication in production
deployments.

CONTINUE

Set up teams
Regardless of whether you intend to use external or internal authentication, the first step

is to set up your teams within Portainer. Teams are used to configure access to

environments and the resources within, such as containers, services and volumes.

How you configure your teams will be highly specific to your needs and your

organizational structure. An example of how you could configure your teams might be:

E X T E R N A L A U T H P R OV I D E R I N T E R N A L A U T H E N T I CAT I O N

2

Teams can be added, removed and adjusted at a later date as required, and users can be

members of multiple teams, so don't feel you need to get this exactly right immediately.

However it is important that you think about who needs access and at what levels early

on in the deployment process. In particular, if you are planning to use an external auth

provider, for automatic team-to-group mapping to occur your team names must match

the groups you use in your external auth provider.

Creating a team
Once you've decided on the teams you want to create, log into Portainer as an

administrator and select Users, then Teams in the left hand menu.

Development - For access to your development and staging

environments, but not to production environments.

Support - For limited access to your production environment, and
no access to development or staging.

QA - For access to your staging environments to complete pre-

release testing.

Tech Leads - For access to all environments in order to facilitate
deployments to production and provide assistance throughout the

software chain.

Here you'll see a form to add a new team as well as a list of existing teams. Fill in the

Name field with the name of the team you want to create.

For now, don't select any team leaders - we'll come back to that option later. Click the

Create team button to create the team, and repeat for as many teams as you need.

If you intend to use an external authentication provider and the
groups that exist within that provider, be sure to match your
team names to those group names.

Now that we have our teams set up, we can move on to setting up authentication itself.

What about users?
At this stage, we just need to worry about setting our teams up. We will cover the adding

of users to your teams at a later point in the lesson.

CONTINUE

Recommended: Set up external auth provider
As mentioned above, Portainer supports external authentication via LDAP, Microsoft

Active Directory and OAuth. As long as your auth provider supports one of these

methods, it should be compatible with Portainer. For OAuth, as well as the ability to

specify a custom OAuth configuration, we have pre-configured provider templates for

Microsoft, Google and GitHub available.

Automatic user provisioning
When setting up your external authentication provider you will be given the option of

enabling automatic user provisioning. In most cases we recommend enabling this, as it

will automatically create a user configuration within Portainer for users that log in

successfully, letting that user interact with the Portainer system. If automatic user

3

provisioning is disabled, users will need to be created manually within Portainer that

match the username provided by your auth provider in order for them to be able to login.

You can find more about automatic user provisioning in the Portainer documentation.

LDAP / AD: User and Group search configurations
For LDAP and Active Directory configurations, you will be asked to configure user search.

This lets you specify a subset of users from your auth provider who will have access to

Portainer. You can search your entire organization or limit your search to specific OUs or

containers, and from there filter your results to suit your needs.

You can also optionally configure group search. This allows you to automatically place

users, based on their LDAP / AD group, into an identically named team within Portainer.

We highly recommend the use of this feature to simplify the organization of access within

Portainer, and is why we created teams before setting up authentication.

You can select the groups you choose to automate in this method through the use of

filters. In addition, you can also configure groups to automatically become Portainer

admins if so desired. As always, we recommend caution when applying automatic admin

rights.

You can find more about configuring user search and group search in the Portainer

documentation.

OAuth: Team membership
For OAuth providers, you can choose to enable Automatic team membership to

automatically add OAuth users to Portainer teams based on the Claim name you

configure. Claim names will be matched with teams or you can manually link a claim name

(using regex) with Portainer teams under the Statically assigned teams option. You can

https://docs.portainer.io/admin/settings/authentication
https://docs.portainer.io/admin/settings/authentication/ldap#user-search-configurations
https://docs.portainer.io/admin/settings/authentication/ldap#group-search-configurations

also define a Default team for users who don't belong to any other team, as well as

enable the automatic assignment of admin rights to specified groups if needed.

We generally recommend enabling the Automatic team membership option and

configuring matching, as it retains the OAuth provider as the "source of truth" for users. If

the option is disabled you will need to manually create matching local users first before

they can log in with OAuth. Automatic assignment of admin rights should be done with

care, however.

OAuth-specific options
For OAuth providers, there are a few specific options to consider. Enabling Use SSO lets

your users take advantage of pre-existing sessions for their credentials, allowing them to

bypass the login form if they have an active session already. Depending on your

organization's security stance, this may be something you need to leave disabled.

In addition, when using OAuth you can choose to hide the internal authentication

prompt to users, forcing them to only log in with the OAuth credentials and not an

internal Portainer user. Again, hiding the internal authentication prompt will depend

greatly on the security requirements of your particular setup.

Configuring external authentication
You should now be ready to configure your external auth provider within Portainer. You

will find links below to our documentation for each of our supported external

authentication methods - choose the one that suits your needs and follow the provided

instructions.

LDAP
Suitable for using an OpenLDAP or custom LDAP provider.

LDAP

Microsoft Active Directory
Use an on-premise or remote Microsoft Active Directory service for authentication.

ACTIVE DIRECTORY

OAuth
Select from a custom OAuth configuration or from pre-selected configurations for Microsoft, Google

https://docs.portainer.io/admin/settings/authentication/ldap
https://docs.portainer.io/admin/settings/authentication/active-directory

or GitHub.

OAUTH

CONTINUE

Alternative: Create internal users
If you don't have an external authentication provider to connect to or you would prefer to

use a separate system, you can instead configure users directly within Portainer. Bear in

mind that any changes to these users would be done within Portainer.

To create users within Portainer, log in as an administrator and select Users in the left

hand menu. You'll be taken to a list of the current users as well as a form to add new

users.

4

https://docs.portainer.io/admin/settings/authentication/oauth

Fill in the Username for the user you want to create, then enter a strong password in the

Password and Confirm password fields. On a new install, passwords must be at least 12

characters long, but administrators can adjust this minimum length if required. You can

enable the Administrator toggle to make this new user an administrator, but we

recommend using this sparingly. You can also select one or more teams to add the new

user to from the Add to team(s) dropdown. When you're ready, click Create user.

CONTINUE

Summary
In this lesson we've covered the following topics:

5

The authentication methods Portainer supports: external
authentication and internal authentication, and when to use each

method.

Creating teams for your users, with names that match your existing

groups (if using external authentication).

You may have noticed we haven't given any permissions to our users or teams yet.

Permissions in Portainer are tied closely to the environments themselves, and we'll cover

adding environment-specific roles to users and teams when we start adding our

environments to Portainer in the next lesson.

Setting up your external authentication provider for use with

Portainer, and some of the settings you may want to be aware of.

Adding internal users to Portainer, if you are using internal
authentication.

So far we've installed Portainer, secured the configuration and set up authentication. Now

we're ready to move on to setting up our environments. In this lesson we will cover:

START

What is an environment?
When we refer to environments within Portainer, we are talking about the individual

containerization setups you want to manage. For some organizations this may be as small

as a single environment, perhaps the one that the Portainer Server is deployed to, in

Lesson 9 of 13

Adding environments

What an environment is1

The options for connecting to an environment, and when to use
each one; and

2

How to add your environments to Portainer3

1

which case this lesson can be skipped. For most organizations however there will be one

or more setups external to the management environment that you need to connect to and

manage, whether they be individual Docker Standalone environments, Swarm or

Kubernetes clusters, or Edge / IoT / IIoT devices.

If we refer back to our example architecture diagram, we can get a better picture of what

an environment is.

In previous versions of Portainer, we referred to environments as
"endpoints", so you may see them referenced as such in older
documents and in the API for legacy support.







Development environment

In this example, this development environment is a single-node Docker Standalone setup.



Production environment

The production environment in this example is a three node Kubernetes cluster. As with the UAT Swarm
environment, despite having three nodes this is considered one environment.



UAT environment

The UAT environment here consists of a three node Docker Swarm cluster. Despite the number of nodes,
this is one environment.

CONTINUE

Agent vs Edge Agent
Portainer supports a number of different connection methods for adding environments,

but in a production setup we highly recommend the use of the Portainer Agent to

connect. The Portainer Agent is a lightweight container that runs on your environment

2



and facilitates the communication between the environment and the Portainer Server

instance. The Portainer Agent can be deployed in two different configurations: Agent and

Edge Agent, with the primary difference being how they communicate with the Portainer

Server instance.

Agent
In Agent mode, the Portainer Server instance initiates communication from itself to the

Portainer Agent container. With this method you are interacting with your environment in

real time.

This requires that the Agent listen on a specific port for connections so that the Server

can connect. As such, we generally recommend the use of Agent mode only in private

networks where exposing a port on the Agent is acceptable within your organization's

security posture.

Edge Agent

In Edge Agent mode, the opposite occurs. The Agent periodically connects back to the

Portainer Server instance to check if there are pending tasks to perform. As a result,

there is no need to expose any ports on the Agent end, making the Edge Agent mode

ideal for remote environments outside of your network, and requiring only that your

Portainer Server be accessible from the Agent.

Because the Agent initiates the communication in Edge Agent mode, you don't

necessarily have instant access to your environment initially. You can however use a

reverse tunnel initiated by the Agent to provide this access. When you select an Edge

environment to manage through the Portainer UI, behind the scenes the Portainer Server

logs a request for a tunnel to be opened. When the Edge Agent next connects to the

Portainer Server to check for updates, it will see the pending tunnel request and initiate

the tunnel, providing you access to the remote environment. Because of this check in

process, you may need to wait for your tunnel to establish. The check-in interval for Edge

Agents defaults to every 5 seconds, but this can be adjusted to suit your needs.

Edge Agent Async
The Edge Agent can also be configured to run in Async mode. For the most part this

mode works the same as the standard Edge Agent configuration, with the notable

exception that the reverse tunnel functionality is not available. Environment status is

available through the use of "snapshots" sent periodically from the remote environment to

the Portainer Server. This means that Async mode is best suited for IoT and IIoT devices

where direct interaction with the environment is not required, and instead there is a

desire for very small amounts of data to be transmitted, which is helpful when there may

be limited or intermittent connectivity with the remote device, or when your remote

devices are connected over unreliable network connections.

Pros and cons
As we've covered above, there are pros and cons for each deployment option. To

summarize, your Agent deployment options are as follows:

Agent
Type

Comm.
direction

Pros Cons Best for

Agent
Server ->

Agent

Instant access

Real-time

management

Requires

exposing

port at the

Agent

Environments
on local /
private
networks

Edge
Agent

Standard

Agent ->
Server

No exposed

ports at the

Agent

Real-time

management

(on demand)

Delayed
real time
access

Environments
on remote
networks

Agent
Type

Comm.
direction Pros Cons Best for

Edge
Agent
Async

Agent ->
Server

No exposed

ports at the

Agent

Low data

usage

No real
time
access

Remote IoT /
IIoT devices

You can have a mix of agent types across your setup, but each environment should only

be added once and with one agent type.

CONTINUE

Add an environment
You should now have a better idea on which Agent type you want to use for your

environments, and are now ready to start adding those environments to Portainer.

3

For the purposes of this lesson we will be covering adding
existing environments to Portainer rather than provisioning new
environments. You can learn more about provisioning a KaaS

https://docs.portainer.io/admin/environments/add/kaas

To add a new environment in Portainer, log in as an administrator and select

Environments in the left hand menu, then click the Add environment button in the top

right. This will take you to the Environment Wizard. Check all the environment types you

want to add in the Connect to existing environments section and click Start Wizard.

You'll now be asked to complete the configuration for each of the environment types you

selected. You can find a full list of supported environments in our documentation, with

direct links to the instructions for Docker Standalone, Swarm and Kubernetes below.

cluster or creating a Kubernetes cluster directly from Portainer
in our documentation.

https://docs.portainer.io/admin/environments/add
https://docs.portainer.io/admin/environments/add/kaas
https://docs.portainer.io/admin/environments/add/kube-create
https://docs.portainer.io/admin/environments/add

Docker Standalone
Add a Docker Standalone environment to your Portainer instance.

DOCKER STANDALONE

Docker Swarm
Add a Docker Swarm cluster to your Portainer instance.

DOCKER SWARM

Kubernetes
Add a Kubernetes cluster to your Portainer instance.

KUBERNETES

Once you have filled in the details for your environment, you can click Next to proceed to

the next environment type. If you have added all your environments, click Close to return

to the environment list.

CONTINUE

4

https://docs.portainer.io/admin/environments/add/docker
https://docs.portainer.io/admin/environments/add/swarm
https://docs.portainer.io/admin/environments/add/kubernetes

Summary
In this lesson we covered adding the environments you wish to manage to your Portainer

installation. We talked about:

In the next lesson we'll combine the work of this lesson and the previous lesson on

configuring access, and set up access to our newly-added environments for our users

and teams.

What we mean when we refer to an "environment" in Portainer.

The options for connecting to environments and when you should
use each one.

How to add your environments to Portainer.

We've got our users and teams configured, our environments added, and now we need to

combine the two and give permissions to our users and teams to access the

environments. In this lesson we'll talk about:

As your particular organizational requirements will be unique to you, we'll be speaking in

examples for the most part. Adjust these to suit your needs.

START

Lesson 10 of 13

Managing environment access

The Role-based Access Control (RBAC) system in Portainer and

how it works.
1

How you could structure your role assignments across users and
teams.

2

How to assign roles to your users and teams.3

Role-based Access Control
In Portainer Business Edition, we provide Role-based Access Control, or RBAC, as a way

of providing differing levels of access control to users and teams based on their needs, in

a consistent way across environment types. Docker does not natively provide any sort of

access control, so we have developed our own to provide this. On Kubernetes

environments, we leverage the built-in RBAC functionality that Kube provides in

combination with our own role management.

We define a role as a set of privileges, as in the rights to perform actions. Users and

teams can be assigned roles, inferring that role's privileges on the user or team. Roles are

also environment-specific - that is, you would assign a role to a user or team, and then

associate that pairing to an environment. As a result, a single user or team can have

different roles for different environments.

Portainer's roles
Portainer has five assignable roles for users and teams. They are:

1

Environment administrator
The Environment administrator role has full access within the
assigned environment, but cannot make any changes to the

infrastructure that underpins the environment (ie, the host), and are

also not able to make changes to global Portainer settings.

Environment administrators also can't make changes to resource
ownership within an environment.

Operator
The Operator role, as the name suggests, has operational control

over the resources deployed within the assigned environment. They

In addition to these five roles, the Administrator role (which your initial user was created

with) exists as a "global admin", with complete control over Portainer's configuration and

all environments. As such, this account should be used sparingly and protected well.

can start, stop, update, and redeploy containers or services, check

log files, and connect to containers via the console, but are not able

to create new resources or delete existing resources.

Helpdesk
The Helpdesk role is a read-only user, able to see all the resources

in the assigned environment but not able to make changes to them

in any way. They also cannot console into a container or make
changes to volumes.

Standard user
The Standard user role has complete control over their own or their

team's resources within the assigned environment, including the
ability to deploy new resources.

Read-only User
The Read-only user role is similar to the Helpdesk role in that it is

read-only, however it only has access to resources they are entitled
to see, for example resources created by members of their team

and resources marked as public.

For a more detailed reference as to how Portainer roles relate to
platform permissions, refer to our documentation for Docker and
Kubernetes.

https://docs.portainer.io/advanced/docker-roles-and-permissions
https://docs.portainer.io/advanced/kubernetes-roles-and-bindings

CONTINUE

An example role structure
Let's look at an example for how you might structure your role assignments. In a previous

lesson we talked about some teams you might set up:

Let's also imagine we have the following environments added to Portainer:

2

Developers

Support

QA

Tech Leads

Development

Staging / UAT

Production

In this scenario, we would want our developers to have access to the Development and

Staging environments, but not necessarily Production. Our support team don't need to

get into Staging or Development, but should have limited access to Production. The QA

team needs to have access to Staging but nowhere else, and the tech leads will need

access to everything.

Based on this, here's how we would configure our role assignments:

Environment Team Role

Development

Developers Standard user

Support No access

QA No access

Tech Leads
Environment
administrator

Staging / UAT

Developers Standard user

Support No access

QA Standard user

Tech Leads
Environment
administrator

Production Developers No access

Support Helpdesk

Environment Team Role

QA No access

Tech Leads
Environment
administrator

Developers have the Standard user role in both Development and Staging, so that they

can create and modify their own (and their team's) workloads for testing. They don't need

access to Production. Support has the Helpdesk role on Production, giving them read-

only access to the production workloads so they can troubleshoot without being able to

make changes. QA has the Standard user role on Staging so they can do their testing,

but no other access. And finally, the Tech Leads have the Environment administrator

role on all environments, giving them full access as required.

Remember, this is just an example setup. Your particular needs will differ from the above,

but this should give you a good idea of the possibilities with roles.

CONTINUE

Setting roles for users and teams
Now that we understand the available roles and have an idea as to how we could allocate

them, let's assign some roles.

3

Log into Portainer as an administrator and select Environments from the left hand menu.

Find the environment you want to configure access for in the list, and select Manage

access on the right.

Here you'll see some information about your environment, a Create access section, and

the current access configuration. To add a new access configuration, in the Create

access section select the users and/or teams from the dropdown and the corresponding

role to assign to those users and/or teams. To submit, click Create access.

Do this as many times as you need to for the various users and teams you want to add

with each role. You can check the list below to see your configuration. When you've

finished setting up access for this environment, you can return to the Environments page

and select your next environment to configure.

CONTINUE

Summary
In this lesson we've covered the following topics:

4

Up next, we'll cover configuring your registries with Portainer, and how to provide your

users with access to those registries.

What the RBAC system in Portainer is and how it works.

An example configuration of role assignments.

How to assign roles on environments to users and teams.

In a production environment it is highly likely you will have your own container images you

need to deploy, or at least custom versions of common images. As such, you will likely

store these in image registries. In this lesson we'll talk about adding those registries to

Portainer. We'll cover:

START

Registry types
Portainer supports the use of multiple types of registries. These include:

Lesson 11 of 13

Adding registries

The types of registries currently supported by Portainer.1

Adding a new registry in Portainer.2

Configuring access to your registries on your environment.3

1

Docker Hub (authenticated accounts)

AWS Elastic Container Registry (ECR)

Quay.io

ProGet

Azure Container Registry

GitLab container registry

GitHub container registry (ghcr.io)

We also support the use of custom registries that adhere to the Docker Registry API v2

standard.

For each registry type, access depends on providing credentials. The configuration and

retrieval of these credentials differs from provider to provider, as does the type of

information you require, so we advise referring to our documentation for the details

needed by your registry type.

CONTINUE

Add registries
Once you've determined the type of registry you have and have obtained the necessary

credentials for access, you're ready to add it to Portainer.

2

https://docs.portainer.io/admin/registries/add

Log into Portainer as an administrator and select Registries from the left hand menu.

You'll be taken to a page that lists your current registries. To add a new registry, click the

Add registry button on the right.

From here, choose the type of registry you want to set up and fill in the relevant details.

For specific instructions for each registry type, refer to our documentation:

On a fresh installation, this list will include Docker Hub
(anonymous) by default. If you wish to disable anonymous
access to Docker Hub, you can click the Hide for all users
button.

Docker Hub

AWS ECR

Quay.io

ProGet

Azure

GitLab

GitHub

Custom registry

CONTINUE

Registry / environment access
Once you've added your registry, you now need to configure access to your registries

across your environments. This lets you specify the users and teams that are able to use

each specific registry on a per-environment basis.

First, from the home page select the environment you want to configure with registry

access. Depending on the environment type, select the following from the new section in

the left menu:

For Docker Standalone environments, expand the Host option and select
Registries.

For Docker Swarm environments, expand the Swarm option and select Registries.

For Kubernetes environments, expand the Cluster option and select Registries.

3

https://docs.portainer.io/admin/registries/add/dockerhub
https://docs.portainer.io/admin/registries/add/ecr
https://docs.portainer.io/admin/registries/add/quay
https://docs.portainer.io/admin/registries/add/proget
https://docs.portainer.io/admin/registries/add/azure
https://docs.portainer.io/admin/registries/add/gitlab
https://docs.portainer.io/admin/registries/add/ghcr
https://docs.portainer.io/admin/registries/add/custom

Regardless of your environment type, you should now be at the Environment registries

page. You will see a list of registries that have been configured in Portainer. Locate the

registry you want to configure for access and select Manage access to the right of it.

Here you'll see some brief detail about the registry, a Create access section and a list of

the current access configuration. For Docker Standalone and Docker Swarm

environments, use the dropdown in the Create access section to select the users and/or

teams you want to have registry access and click Create access.

Note that the list of users and teams in the dropdown will be
limited to those that have been provided with access to the
environment. Any users or teams with no access to the
environment will not appear in the list.

For Kubernetes environments, registry access is provided to namespaces rather than

users or teams. Use the dropdown in the Create access section to select the namespaces

you want to have registry access and click Create access.

Once you have completed adding user and team access, return to the previous page to

configure access for other registries on this environment. Once you've completed doing

so for this environment, move on to your next environment and repeat the process as

needed.

CONTINUE

4

Summary
In this lesson we covered the addition of registries and their access. Specifically, we

talked about:

We're almost done! In the next lesson we'll talk about specific configuration and security

settings for the different environment types supported by Portainer.

The types of registries that are supported for use in Portainer.

The process of adding registries within Portainer.

How to set your users and teams up with access to your registries

on each environment.

In this lesson we'll cover some of the environment settings you should adjust to suit your

needs, with a focus on making those environments as secure as possible. We'll look at:

Where possible we will make recommendations for each setting, as well as provide links

to more detailed documentation. We recommend working through each of your

environments in turn and adjusting the settings as needed.

START

Lesson 12 of 13

Securing your environments

General options that apply to all types of environment.1

Options that apply to Docker Standalone and Docker Swarm
environments.

2

Options that are specific to Kubernetes environments.3

1

General settings
While for the most part each environment type has their own unique configuration

settings, there are some that are available for all types.

Change Window
Portainer provides the ability to configure a change window for each environment, letting

you specify when automatic updates to your stacks or deployments are allowed to be

applied. This setting will depend greatly on your specific need, but we recommend

configuring this on production to reduce the impact of any downtime for updates. Note

this setting only applies to stacks or applications that have been deployed from Git and

use the automatic update functionality.

For Docker Standalone and Docker Swarm environments, you can find the change

window settings under Host | Setup and Swarm | Setup respectfully. For Kubernetes,

you'll find them under Cluster | Setup.

CONTINUE

https://docs.portainer.io/user/docker/host/setup#change-window-settings
https://docs.portainer.io/user/docker/swarm/setup#change-window-settings
https://docs.portainer.io/user/kubernetes/cluster/setup#change-window-settings

Docker
For the most part, the options available for Docker Standalone and Docker Swarm

environments are the same. To access the Docker Standalone settings, select a Docker

Standalone environment, expand the Host option in the left menu and select Setup. For

Docker Swarm, expand the Cluster option and select Setup.

There are a number of options in this section that are worth examining and you can find

detail on each of them in our documentation for Docker Standalone and Docker Swarm. In

this lesson we'll focus on some of the more important security options to consider.

2

https://docs.portainer.io/user/docker/host/setup
https://docs.portainer.io/user/docker/swarm/setup

Host management
For Docker Standalone environments deployed with the Portainer Agent and for Swarm

environments, you have the option of enabling host management features for the

environment. This feature allows you to interact more closely with the underlying host,

including listing available devices and browsing the filesystem.

We recommend considering whether this functionality is a requirement for your

deployment and only enabling it if it is something you require, as there could be security

implications to being able to view and interact with the host directly.

Docker Security Settings
There are a number of toggles in this section and we recommend reading each one

thoroughly. In particular, pay attention to:

Disable privileged mode for non-administrators
Unless you know that your users will need to deploy containers or services that
require privileged mode, we recommend toggling this option on.

Disable the use of host PID 1 for non-administrators
Deploying a container that operates as PID 1 (the host PID) allows that container to
run as if it was root on the host environment. If this is not necessary for your
deployments, we recommend toggling this on.

Disable device mappings for non-administrators
When this option is on, non-admin users cannot map host devices to containers. If
your workloads don't require the ability to map host devices to containers, we
recommend toggling this on.

Again, consider each option carefully, especially any warnings that are displayed

regarding affected functionality. You'll find more detail in our documentation for Docker

Standalone and Docker Swarm.

CONTINUE

Kubernetes
For Kubernetes environments there are a number of configuration settings to consider, all

of which can be found in our documentation, but in this section we'll cover some of the

most important security options. To access the environment's settings, select a

Kubernetes environment, expand the Cluster option in the left menu and select Setup.

3

https://docs.portainer.io/user/docker/host/setup#docker-security-settings
https://docs.portainer.io/user/docker/swarm/setup#docker-security-settings
https://docs.portainer.io/user/kubernetes/cluster/setup

Networking
There are two options within the Networking section of the Cluster setup page, both

which are important to configure to your requirements.

Allow users to use external load balancer
Enabling this option lets your users create load balancers from Portainer in order to
expose your applications externally. Bear in mind that this functionality requires that
your cloud provider allows you to create load balancers, and that doing so may
result in costs from your cloud provider for the hosting of the load balancer. If you
don't think you'll need this, leave it off.

Ingress controllers
This section lists all the ingress controllers Portainer was able to discover in your
cluster. You can choose to allow or disallow access to each ingress as required. If an
ingress is disallowed, users will not be able to use that ingress to publish
applications. We recommend setting this for each ingress as required.

Deployment Options
You can use this section to apply restrictions on the ways your users are able to deploy

applications on your environment. Note that this section only appears if the Allow per

environment override option is enabled in the global Portainer settings. We recommend

either configuring this globally or on an individual environment basis as required.

Override global deployment options
This lets you override the deployment options set in the global Portainer settings for
this environment, otherwise this environment will inherit the global settings. Enable
this if you need to change the restrictions on this environment.

Enforce code-based deployment
If this option is enabled, users will not be able to create applications or other
resources via the Portainer forms, only allowing deployments through YAML files. If
your organization enforces deployments from Git repositories, then this might be a
good option for you.

The following options only appear if Enforce code-based deployment is on:

Allow web editor and custom template use
Enable this to allow users to use the web editor and custom templates to deploy
applications.

Allow specifying a manifest via a URL
Enable this to allow users to deploy applications using the URL option.

Security

https://docs.portainer.io/admin/settings#deployment-options

The following options appear in this section:

Restrict access to the default namespace
Enabling this option restricts users from being able to access the default
namespace, limiting access to administrators only. Unless you know your users will
need to deploy to the default namespace, we recommend enabling this option.

Only allow admins to deploy ingresses
If this option is enabled, only cluster administrators will be able to provision new
ingresses in the environment. If you want to prevent your users from doing so,
enable this option.

Resources
From a security perspective, the important option here is:

Allow resource over-commit
Enabling resource over-commit will let you assign more resources than are
physically available on your cluster to your workloads. While this is helpful in some
scenarios, for production environments we highly recommend leaving this disabled
to avoid overprovisioning and potential resulting downtime. When the option is
disabled, you can also configure a percentage of resources to reserve for use by the
system.

Allowing resource over-commit is really only useful if you have cluster auto-scaling
enabled with your cloud provider, which would allow additional cluster nodes to be
spun up automatically as needed. If this isn't functionality you need, you can safely
leave this option disabled.

Security constraints
For Kubernetes environments, Portainer implements pod security policies through the use

of OPA Gatekeeper. These are per-environment, and let you apply fine-grained

restrictions to the functions available to pods deployed on your environment.

To access these settings, expand the Cluster option in the left menu and select Security

constraints. From here, toggle on Enable pod security constraints to show the full set of

options.

Be cautious when applying these settings! They are quite
powerful, and when a pod is unable to deploy because of one of
these restrictions it may not be immediately obvious that these
are the cause. We recommend testing first!

Because of the potential impact of these restrictions and the variety of functionality a pod

may require, we're not able to make recommendations here. However, we do advise

checking these carefully and testing your deployments to determine what works best for

your needs. We provide full detail on each option in our documentation.

CONTINUE

Summary
In this lesson we've covered securing your environments within Portainer, looking at:

4

General options available to all environment types,

https://docs.portainer.io/user/kubernetes/cluster/security

In the final lesson of the course, we'll summarize everything we've covered in this guide.

Docker Standalone and Docker Swarm specific options, and

Options specific to Kubernetes environments.

Congratulations, you are done! You should now have a running Portainer Business Edition

installation, with:

Lesson 13 of 13

Summary

Your custom SSL certificate installed

Firewall restrictions applied for access

Automatic backups of the Portainer database in a S3 bucket

External (or alternatively internal) authentication configured

Teams configured for your users

Environments added to manage from Portainer, configured and
secured according to your organizational needs

Access to your environments configured for your users and teams

with only the permissions they require

Registries added for use by your users, teams or namespaces as
permitted

If you make changes to your configuration in the future (for example, if you add new

environments to manage) we recommend running through the relevant lessons in this

guide again to ensure you stay secure.

