
Get a production-ready Kubernetes cluster up and running with Portainer and Omni in
under two hours.

Introduc�on

Provision a management environment

Configure external authen�ca�on

Set up Omni

Create your Talos machines

Create your Kubernetes cluster

Secure your cluster

James Carppe

KubeOps: Deploy prod-ready Kubernetes in 120
Minutes

Upgrade the Kubernetes version

Role-based Access Control (RBAC)

Deploy an applica�on

Summary

Welcome
Welcome to the KubeOps workshop! In this session we will be provisioning and

configuring a Kubernetes cluster using Omni, managed by Portainer. By the end of the

workshop you will have:

What you'll need

Lesson 1 of 11

James Carppe

Introduction

A management server running Docker Standalone with Portainer
Business Edition.

A secured, production-ready three-node Kubernetes cluster running

Talos Linux, provisioned via Omni and managed by your Portainer

management server.

External authentication to your Portainer server configured via

OAuth.

Role-based Access Control �RBAC� set up for your cluster.

A sample application deployed on your cluster.

For this workshop we'll assume you have the following:

As part of the workshop you'll also need the following:

Let's get started!

A laptop or other computer that you can use to complete the lesson.

An internet connection.

A GitHub account. You'll use this as your OAuth provider. If you
have another OAuth provider you prefer you can use that, but this

workshop will assume you are using GitHub. You'll also use GitHub

to deploy the sample application.

A Digital Ocean account. This is for the management server and
cluster nodes you'll create. We'll provide a referral link so you can

get started with some credit. If you have another hosting provider

you would prefer you can use them, but this workshop will assume

you are using Digital Ocean (and has some steps and configurations
that are Digital Ocean specific).

An Omni account with Sidero Labs. The workshop will walk you

through the setup process for this.

A Portainer Business Edition license. If you do not already have a
license, you can sign up here.

https://www.portainer.io/get-started

The first thing we need when setting up a cluster with Portainer is, well, Portainer. In this

lesson you will:

START

Provisioning a server on Digital Ocean

Lesson 2 of 11

James Carppe

Provision a management environment

Provision a server to act as a "management server" that will stand

outside of your Kubernetes cluster.
1

Install Docker Standalone on the server.2

Install Portainer Business Edition and complete the initial setup.3

1

For this workshop, we're going to spin up a Ubuntu Server VM in Digital Ocean to act as

our "management server". We'll install Docker on this server, then Portainer itself.

Log into your Digital Ocean account. Click the Create button, then select Droplets.

Choose the region you want to deploy in and optionally the datacenter within that

region. Make a note of what you choose as we'll want to use the same region and

datacenter when we create the Kubernetes cluster. Also make note of the VPC Network

- we'll need that too.

If you are using a different provider or have already created your
management server, you can skip ahead to the next section.

Next we choose the image. For this workshop we'll pick Ubuntu 24.04 (LTS) x64.

Now we pick the size of the VM. Since this VM is only going to run the Portainer server

and not any actual workloads, we can choose a Basic type, Regular CPU type and the

2GB / 2 CPUs plan.

Scroll down to the Choose Authentication Method section. Here you can decide how

you'll access this server for the initial setup. If you have a SSH key pair you can use, we

recommend selecting this option and providing your key pair. Otherwise you can choose

to use a password instead.

Finally, scroll down to the Finalize Details section and give your VM a Hostname, for

example manager.

You will need to have SSH key authentication configured to
create the Kubernetes cluster machines later on in this course,
so we recommend configuring this now.

When you're ready, click Create Droplet. Once the creation completes you will be

returned to the list of droplets, where you'll see yours provisioning. When it completes,

you'll see the server's IP address listed.

We'll use this IP address to SSH in (using the credentials we provided earlier) and

complete the setup.

CONTINUE

Installing Docker Standalone
Now that we have our management server provisioned, let's set it up with Docker

Standalone.

Use your favorite SSH application to log into the server with your root credentials. You

should see something like the following:

2

From here, the first thing we should do is ensure the server's packages are up to date. As

this is Ubuntu, we can do this with apt. Run the following two commands:

The first command updates the apt repository with the latest list of packages. The

second command upgrades your currently installed packages to their latest versions

according to the repository we just updated. This may take a few minutes to complete,

and we generally recommend rebooting the server once it completes in order to ensure

all updated packages are loaded.

Once the server completes rebooting, log back in with SSH. We're now ready to install

Docker Standalone. For this we'll rely on Docker's official installation instructions for

Docker Engine on Ubuntu, the commands for which are summarized below:

apt update

apt upgrade -y

reboot

apt install ca-certificates curl

install -m 0755 -d /etc/apt/keyrings

curl -fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/keyring

chmod a+r /etc/apt/keyrings/docker.asc

echo \

 "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docke

 $(. /etc/os-release && echo "${UBUNTU_CODENAME:-$VERSION_CODENAME}") stab

 tee /etc/apt/sources.list.d/docker.list > /dev/null

https://docs.docker.com/engine/install/ubuntu/

Alternatively you can run this helper script to perform the necessary steps:

Once this is complete, Docker should be installed. You can check this by running:

You should see something similar to the below:

apt update

apt install docker-ce docker-ce-cli containerd.io docker-buildx-plugin dock

curl -sSfL https://get.docker.io | sh

docker ps

root@manager:~# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

If you do, then Docker is up and running.

CONTINUE

Installing Portainer
We have a server, we have Docker installed, so now we need to install Portainer itself.

Installation instructions for Portainer can be found in our documentation. Since we're

installing on Docker Standalone, we just need to run these two commands:

The first command creates a persistent data volume for Portainer's configuration. The

second command starts the Portainer container.

Once the second command completes you can check Portainer's status by running

docker ps again. You should see the Portainer container listed:

3

docker volume create portainer_data

docker run -d -p 8000:8000 -p 9443:9443 --name portainer --restart=always -

https://docs.portainer.io/start/install/server/docker/linux

Now that the container is running, we need to connect to the Portainer UI in order to

complete the setup.

Open your web browser of choice and navigate to the following URL (replace ipaddress

with the IP address of your management server):

Accept the certificate warning �Portainer generates a self-signed certificate during

installation) and continue, and you'll be presented with the initial setup.

root@manager:~# docker ps

CONTAINER ID IMAGE COMMAND CREATED

b881e36f9355 portainer/portainer-ee:lts "/portainer" 28 seconds ago

https://ipaddress:9443/

This must be done within 5 minutes of starting the Portainer
container for the first time. This is a security measure. If the
initial setup has not been completed within 5 minutes of
starting, the container will stop listening and will need to be
recreated.

First we must set up an initial administrator user. You can choose to use a different

username or stick with the default of admin. Enter a secure password, confirm it, and

click Create user.

Next we'll enter the license key. Paste your key into the box provided and click Submit.

Once this is complete, you'll be logged into Portainer. The local Docker environment will

be automatically detected and configured, and you're ready to proceed.

CONTINUE

Summary
In this lesson we have:

In the next lesson we'll set up external authentication for Portainer using OAuth.

4

Provisioned a management server.

Installed Docker on the management server.

Installed Portainer and completed the initial setup.

We're up and running with a Portainer management server, but right now we only have

one user - the internal administrator. In the real world, you'll want to have multiple users

with different levels of access using your cluster. While this can be done with Portainer's

internal authentication, when you have an existing authentication provider it makes more

sense to leverage that - giving you one place where you manage your users.

In this lesson we will:

START

Lesson 3 of 11

James Carppe

Configure external authentication

Configure GitHub as an OAuth authentication provider.1

Set up Portainer to use GitHub as the authentication method.2

Test out access to Portainer as a GitHub user.3

Setting up GitHub as an OAuth provider
Configuring GitHub to provide OAuth authentication is a relatively straightforward

process. You don't need a commercial account - a free GitHub user is plenty to get

started. So let's do that.

Log into GitHub as your user, then click your profile picture in the top right and select

Settings. You'll be taken to your profile page.

From here, scroll down and click Developer settings at the bottom of the left menu.

1

Next, select OAuth Apps from the left menu. This will take you to a list of your OAuth

apps configured in GitHub. In my case, I have none set up currently.

We'll create a new app now for Portainer. Click the New OAuth app button then fill out

the form.

Application name should identify the application you're using OAuth with - for example,

Portainer. The Homepage URL and the Authorization callback URL should be the URL

that you use to access the Portainer UI, including the https:// prefix and the port. The

Application description is optional.

Once you have the form filled out as required, click Register application. The application

will be created and you'll be taken to the details page. From here, take note of the Client

ID value displayed - we'll need this for the next step.

To go along with the Client ID, we need a Client secret. Click the Generate a new client

secret button. If you have two factor authentication set up on your GitHub account, you

may be asked to reauthenticate at this point.

Once you have done so, a Client secret will be created. Take careful note of this value,

as you won't be able to display it again after this.

This is all we need from GitHub. You can now switch back to Portainer to continue the

OAuth setup there.

CONTINUE

Configuring Portainer for OAuth
With an OAuth application created in GitHub and our client ID and secret obtained, we're

ready to configure Portainer for OAuth.

In Portainer, scroll down and expand the Settings menu at the bottom left and select

Authentication.

2

Here you'll see the authentication options for your Portainer instance. The Internal

method is currently selected, but we want to change this so select OAuth instead.

When OAuth is selected, the options below the selection will change. Here we want to

ensure that Use SSO is enabled, Hide internal authentication prompt is disabled, and

Automatic user provisioning is enabled.

Since we're using GitHub as our OAuth provider, we can select that option now, and fill in

the Client ID and Client secret fields with the appropriate values from our previous step.

With this completed, click the Save settings button to apply your configuration changes.

CONTINUE

Testing OAuth
Let's now test to make sure that the OAuth configuration was applied successfully. Log

out of Portainer by clicking your username in the top right and selecting Log out.

Once you're logged out, return to the URL for your Portainer instance. The login screen

should look a little bit different now.

3

Click Login with GitHub to log back in, and enter your GitHub credentials (and two-factor

code) if asked.

As this is the first time you're logging in to this OAuth application, you will be asked to

authorize access to your GitHub account from your OAuth application. Click the

Authorize button to proceed.

With authorization granted, the login will proceed and you will be taken to the Portainer

dashboard, as your GitHub user.

What you may note is that you don't have access to very much at all as this user.

By default, new users logging into Portainer for the first time have no access to any

environments or other settings. Once we have our Kubernetes environment configured,

we'll configure access to it for this user.

For now, we've shown that OAuth is working and you can log into Portainer as expected.

So let's log out again and back in as the local administrator account you created during

the initial Portainer setup. You can do this by selecting Use internal authentication at the

login page instead of Login with GitHub.

CONTINUE

Summary
In this lesson we have:

4

In the next lesson we'll set up an Omni account and configure Portainer to interact with it.

Created an OAuth application in GitHub.

Configured our Portainer server to use the GitHub OAuth application

as the authentication provider.

Tested logging into Portainer with our GitHub user.

To provision our Kubernetes cluster we'll be using Portainer's integration with Sidero's

Omni platform. To do this, we'll need to set up an Omni account.

In this lesson we will:

START

Lesson 4 of 11

James Carppe

Set up Omni

Sign up for an Omni account with Sidero.1

Create a Service Account within our Omni account.2

Download the Digital Ocean machine image we will use to provision
our cluster machines.

3

Add the Omni Service Account to our Portainer installation.4

Creating an Omni account
Sidero offer a free trial of Omni SaaS that you can sign up for on their website. Head

there and fill out the form, then click Start Trial.

1

https://www.siderolabs.com/omni-signup/

Once you've completed the signup you'll receive an email that will include your Omni

account address.

Go to the URL provided, then click on Create your omni username/password.

On the Register form, fill in the email address you used when signing up and set a strong

password, then click Continue.

You should now receive a second email to verify your email address. Click on the link

provided in the email to do so.

Once verified you will be able to return to the Omni login page and authenticate UI

access. Click Log in to complete the login process.

You should now arrive at the Omni dashboard.

CONTINUE

Creating an Omni Service Account
Now that our Omni account is set up, we need to configure a Service Account. This

Service Account is how Portainer communicates with Omni in order to provision and

manage clusters.

From the Omni dashboard, expand the Settings menu on the left and click Service

Accounts.

2

On the Service Accounts page we'll see that we have none currently created. So let's

create one. Click the Create Service Account button.

Complete the form that appears. For ID you can use a name to identify the application

that is going to be using the Service Account (in this case, Portainer). Configure the

Expiration Days to a value that makes sense to you, and ensure the Role is set to Admin.

When you're ready, click Create Service Account.

The Service Account will create and you will be provided with a block of code containing

a pair of environment variables - OMNI_ENDPOINT and OMNI_SERVICE_ACCOUNT_KEY.

Copy both now - they will not be shown again and are needed for the next step.

We're now ready to add the Service Account to Portainer. But before we do that, while

we're in the Omni dashboard we can download the machine image we'll use for

provisioning our cluster nodes.

CONTINUE

Downloading the machine image
Return to the Home page of the Omni dashboard if you aren't there already. From here,

click the Download Installation media button on the right.

In the popup window, from the Options dropdown select the Digital Ocean (amd64)

option. This is a machine image designed for use with Digital Ocean droplets.

3

If you are using a different provider than Digital Ocean you may
want to choose a different option (or the ISO option for bare
metal deployments).

We don't need to make any further customizations to the image here, so click Download.

The approximately 100MB machine image will generate and then download to your local

computer, and we will upload it to Digital Ocean in the next lesson.

This image is specific to your Omni account and contains preconfigured credentials that

will join your machines with your Omni account on boot.

We're now done in the Omni dashboard. Next we'll add the Omni Service Account to

Portainer.

CONTINUE

Adding the Omni Service Account to Portainer
Log into your Portainer server as the administrator. Expand the Settings menu on the left

and click Shared Credentials.

4

On this fresh install of Portainer you won't have any credential sets configured. Click the

Add credentials button to create one.

Under Provider, ensure that Sidero Omni is selected and fill out the form. The

Credentials name can be any value that identifies this credential set. The Endpoint URL

should be the value of OMNI_ENDPOINT we retrieved in the previous step. The Service

Account key should be the value of OMNI_SERVICE_ACCOUNT_KEY. With these values

entered, click Add credentials.

Your Omni credential set should now appear in the list of credentials.

CONTINUE

Summary
In this lesson we have:

5

Created a new Omni account.

Created an Omni Service Account for use with Portainer.

Downloaded our personalized Digital Ocean machine image for our

cluster machines.

Next up, we'll use that machine image to provision our cluster machines.

Added our Omni Service Account to Portainer's shared credentials.

With our Digital Ocean and Omni accounts set up, our Portainer manager server deployed

and configured, we're now ready to start creating our cluster. The first step in doing so is

to create our machines.

In this lesson we will:

START

Uploading the machine image

Lesson 5 of 11

James Carppe

Create your Talos machines

Upload our personalized Talos machine image to Digital Ocean.1

Spin up three droplets to act as our Kubernetes cluster machines.2

1

In the previous lesson we downloaded a Digital Ocean specific machine image to use for

our Kubernetes nodes. Now we need to upload that image to our Digital Ocean account.

Log into Digital Ocean and expand the Manage menu on the left, then click Backups &

Snapshots.

From here, select the Custom Images tab and click Upload image.

Locate the image you downloaded from the Omni dashboard and select it. You'll then be

asked to answer a few questions about the image.

You can edit the image name if you prefer to have a more user-friendly name, or leave it

as the same as the filename. For Distribution you can set it as Unknown. For the

datacenter region, choose the region and datacenter you want to provision the cluster

in.

When the form is complete click the Upload button. The image will now upload to Digital

Ocean's servers and become available in the list of custom images. It may take a few

minutes for the upload to complete and for the image to then be distributed to the region

you selected.

Next we'll provision some servers using this image.

CONTINUE

Creating the Talos machines
We can now use the Digital Ocean image to provision the machines we'll use for our

Kubernetes cluster. Using the image, the machines will authenticate with your Omni

account and become available for cluster provisioning.

2

In Digital Ocean, click the Create button and choose Droplets.

Choose the region and datacenter you uploaded the custom image to.

Scroll down to Choose an image and click the Custom images tab. You should see your

custom image listed - select it.

For the droplet size we'll again stick with the Basic shared CPU, the Regular disk and

the 2GB / 2 CPU option.

The Talos images require using a SSH key for authentication, so if you don't already have

one set up from earlier you should do so now. If you already have one, select that.

Under Finalize Details, we want to provision 3 servers so change the Quantity to 3

Droplets. Set Hostnames for each droplet as well.

When you're ready, click Create Droplet. The servers will begin provisioning, and once

complete will appear in your list of droplets.

Once your machines have completed provisioning, there is one last piece of information

we need to gather - the Private IP range. We'll need this for some Digital Ocean specific

configuration adjustments in the next step.

From the list of droplets, click the name of one of your newly-provisioned machines. In

the details for the machine, note down the Private IP that is listed. In my case, this is

10.106.0.4.

Once you have this, we're done in the Digital Ocean control panel.

CONTINUE

Summary
In this lesson we:

We're now ready to create our cluster.

3

Uploaded our custom image to Digital Ocean.

Provisioned three droplets using our custom image to act as our

cluster nodes.

With all our preparation work done, we're now ready to create our Kubernetes cluster!

In this lesson we will provision our environment from Portainer on our Digital Ocean

machines, with:

START

Lesson 6 of 11

James Carppe

Create your Kubernetes cluster

The Kubernetes metric server enabled.1

Digital Ocean specific configuration adjustments.2

An older version of Kubernetes (to demonstrate a version upgrade).3

1

Adding a new environment
Log into Portainer as the local administrator. Expand the Environment-related menu on

the left and select Environments. Here you'll see a list of the environments configured in

Portainer - right now you'll only have the local environment where Portainer itself is

running.

To start provisioning our cluster, click the Add environment button. Check the Create a

Kubernetes cluster option in the Environment Wizard and click Start Wizard.

On the next page, ensure Talos Kubernetes is selected. Give your cluster a Name. The

Portainer server details should be automatically populated with the correct values.

In the Omni cluster summary section, your Omni credential set should be automatically

selected. For the Talos version we can keep it at the default value, but for Kubernetes

version we'll change this to an older version - for this example, let's choose v1.31.7.

In Cluster machines, we can select the machines we want to use. You'll see the

machines we provisioned in the previous step listed in each dropdown.

For this cluster we're going to use one control plane and two workers, so make your

selections accordingly.

When provisioning a cluster you can make customizations to the base configuration on

both an individual machine and a whole cluster basis. In our case we're going to make a

cluster-wide change, and we can do that by expanding the Cluster configuration patch

section.

In the resulting text box, paste the following block of code:

Adjust the value of the --iface-can-reach option to suit the Private IP you copied from

the machines you provisioned in the previous step. This is a configuration adjustment that

is required for cluster networking to function properly on Digital Ocean. The other

changes in the patch enable the necessary functionality for the Kubernetes metrics

server to run.

cluster:

 network:

 cni:

 flannel:

 extraArgs:

 - --iface-can-reach=10.106.0.1

 name: flannel

 extraManifests:

 - https://raw.githubusercontent.com/alex1989hu/kubelet-serving-cert-app

 - https://github.com/kubernetes-sigs/metrics-server/releases/latest/dow

machine:

 kubelet:

 extraArgs:

 rotate-server-certificates: true

When you're ready, click Provision environment. You should get a success notification in

the top right - when you do, you can click Close to exit the Environment Wizard.

You'll be returned to the Environments page, where you should now see your cluster

provisioning.

Depending on the size of your cluster and the machine selections you made, the cluster

provision can take a few minutes to complete. Once it has, the Environments list will

update to display the Portainer URL and additional options for the environment.

If you return to the Portainer home page, you should now see the environment listed.

CONTINUE

Summary
Congratulations, you have provisioned a three node Kubernetes cluster through Portainer

and Omni! Our cluster includes:

Technically you are now ready to go with a working Kubernetes cluster. But next, we'll

make some additional tweaks to improve security.

2

The Kubernetes metrics server enabled through a cluster

configuration patch.

Some tweaks to the configuration for Digital Ocean.

Kubernetes v1.31.7 deployed so that we can upgrade it later.

Now that we have our cluster up and running, there are some configuration changes we

should make to secure it. Omni clusters are quite secure out of the box, but there are still

adjustments that can be made.

In this lesson we will:

START

Lesson 7 of 11

James Carppe

Secure your cluster

Restrict access to the default namespace.1

Configure resource quotas on the cluster.2

Examine the options available via OPA Gatekeeper.3

1

Restricting access to the default namespace
Kubernetes clusters ship with a default namespace configured, which is where workloads

that do not specify a namespace would be deployed. For organizational purposes as well

as security reasons, we recommend creating namespaces for your workloads.

Namespaces can be configured with access restrictions and resource quotas (both of

which we'll cover), and in addition can make it easier to keep track of workloads.

To avoid the possibility of your users deploying to the default namespace (which cannot

be configured with resource quotas or access restrictions), we can restrict the usage of it

to administrators only.

Log into Portainer as the local administrator, then select your Kubernetes cluster. Expand

the Cluster menu on the left and select Setup.

This page lets you configure your cluster settings to suit your needs. You can find a full

description of the options here in our documentation. For now, scroll down to the

Security section and enable Restrict access to the default namespace.

https://docs.portainer.io/user/kubernetes/cluster/setup

Click the Save configuration button to apply your changes.

CONTINUE

Configuring resource quotas
Limiting the amount of CPU and memory that can be consumed by individual applications

and namespaces is a good idea in many cases. Doing so can help to avoid situations

where a deployment starts to consume all the available resource on a cluster, causing

other deployments to grind to a halt. In addition, Kubernetes by default allows you to

over-commit resources when deploying, letting you assign more CPU and memory than is

actually available in your cluster to namespaces. For most production workloads, we

recommend turning this option off.

First, we'll need to configure resource quotas on our existing namespaces. With your

Kubernetes environment selected, click on Namespaces in the left menu. This will take

you to the list of namespaces on your environment.

2

At this point you should have only two namespaces:

We want to set a quota on this second namespace, so click on kubelet-serving-cert-

approver to be taken to the Namespace details page.

The default namespace, which we can't adjust quotas on but,

thanks to the option we just set, cannot be provisioned to by non-
administrator users.

A namespace called kubelet-serving-cert-approver, which

contains the deployment used to rotate the certificates used with

the metrics server component we added with our customizations
during the deployment.

Here you can see the details for this namespace. Under Resource Quota, enable the

Resource assignment toggle. This will display two new options for Memory limit �MB�

and CPU limit. For this resource, we're going to set these to values of 512 MB for memory

and 0.5 for CPU. You can use the sliders to set these values or for memory, type it in

manually.

With these values set, click the Update namespace button to save your changes, and

click Update in the popup box to confirm. If you now return to the Namespaces list, you

can see that the namespace is now listed as having quota enabled.

Let's now disable resource over-commit across the cluster. With your Kubernetes

environment selected, expand Cluster in the left menu and click Setup, then scroll down

to the Resources and Metrics section.

Disable the Allow resource over-commit toggle. This will show a new option to specify

the system resource reservation. This is a percentage of resource �CPU and memory)

that Kubernetes will keep in reserve for system functionality. For now we'll leave this on

the default of 20%.

When you're ready, click Save configuration to apply the changes.

CONTINUE

OPA Gatekeeper
OPA Gatekeeper is a pod security policy application and lets us specify more fine-grained

policies on what can and cannot be done on our cluster. For this workshop we'll look at

some of the options that are available through OPA Gatekeeper.

With your Kubernetes environment selected, expand the Cluster menu on the left and

select Security Constraints.

3

Toggle on the Enable pod security constraints option, and a list of possible security

constraints will be shown.

A full description of each option is available in our documentation. For now, let's enable

Restrict running privileged containers.

Scroll down and click Save settings to apply the policy. Note that the first time you set

and save an option here it may take a little longer to apply, as in the background

Portainer is deploying OPA Gatekeeper on your cluster in order to provide the policies.

CONTINUE

Summary
In this lesson we adjusted the configuration of our Kubernetes cluster to make it more

secure. We:

4

https://docs.portainer.io/user/kubernetes/cluster/security

In the next lesson we'll demonstrate how you can update your Kubernetes cluster from

within Portainer.

Restricted access to the default namespace to administrators only.

Set resource quotas on our existing namespace and disabled

resource over-commit on the cluster.

Looked at the policy options that OPA Gatekeeper provides and

restricted running privileged containers on the cluster.

Deploying a Kubernetes cluster with Portainer and Omni gives us some powerful tools

when managing the cluster. New versions of Kubernetes are released regularly containing

fixes and new features, and you can easily upgrade your cluster's Kubernetes version

with a few clicks.

In this lesson we will upgrade our Kubernetes cluster to the latest version.

START

Upgrading Kubernetes
Log into Portainer as the local administrator. Select your Kubernetes environment then

expand the Cluster menu on the left and select Details.

Lesson 8 of 11

James Carppe

Upgrade the Kubernetes version

1

On the Cluster page you will see information about your cluster including resource

reservation and usage, as well as tools to manage your cluster. Scroll down to the Omni

cluster management section.

Here we can see the current Kubernetes and Talos versions. When we provisioned the

cluster we chose an older version of Kubernetes (1.31.7) which is listed as current, and

you will note the message indicating a new Kubernetes version is available. If we click the

Kubernetes version dropdown we can see the options available to us.

Scroll down in the list to find the most recent version of Kubernetes available (in my case,

v1.32.3) and select it, then click Update Kubernetes version. You'll be shown a warning

that the cluster may become unavailable during this upgrade - since we're not running

any workloads yet, this is fine. Click Confirm to proceed.

The upgrade process will now begin. Note that this process may take a few minutes to

complete. You'll see status updates with detail on how the upgrade is proceeding.

Once the upgrade completes, the current version listed will be updated to the version we

selected.

We can confirm this has rolled out to all nodes in the cluster by scrolling down to the

Nodes section and checking the listed version.

CONTINUE

Summary
In this (quick) lesson we successfully upgraded our Kubernetes cluster to the latest

version in just a few clicks, without having to touch the command line at all.

In the next lesson we'll start configuring user-level access using Role-based Access

Control �RBAC�.

2

Role-based Access Control, or RBAC, is a way in which you can specify the access level

of users within your organization to the resources available via Portainer. Users can be

provided with roles at both an individual and group level, for environments themselves as

well as resources within those environments.

In this lesson we will:

START

Lesson 9 of 11

James Carppe

Role-based Access Control (RBAC

Configure our GitHub OAuth user with access to our Kubernetes
environment.

1

Create a namespace on the environment and give our GitHub OAuth

user access to it.
2

Log in with our GitHub OAuth user and confirm our level of access is
as expected.

3

Giving our user environment access
To start with, we need to give our user access to the new Kubernetes environment. As

you'll recall from when we configured OAuth, the GitHub user could not see any

environments when logged in.

Let's remedy that. Log into Portainer as the local administrator, then in the left menu

expand Environment-related and select Environments.

1

You should see our two environments listed - local (the local Portainer server

environment) and the Kubernetes cluster we created (in my example, this is called

talos-cluster).

Next to your Kubernetes environment, click the Manage access link. Here you can

manage access to this environment. Scroll down to the Access section and you will see

that there are no users or groups listed with access to the environment currently (the

initial administrator has access to everything so is not listed here).

Scroll back up to the Create access section and from the Select user(s) and/or team(s)

dropdown choose your GitHub user. In the Role dropdown, choose the Standard user

role.

The Standard user role has full access to resources that they
create or are given access to, or that a member of their team has
deployed. They do not have any administrative access to either
the cluster or to Portainer itself. For more on roles and their
respective access levels, refer to our documentation.

https://docs.portainer.io/admin/user/roles

When you're ready, click Create access. The user will be given the Standard user role on

the environment and will now appear in the Access list.

CONTINUE

Creating a namespace for the user
Our user now has access to the Kubernetes cluster, but they don't have any namespaces

to work in. As an administrator, let's create one for them.

Select your Kubernetes environment then select Namespaces from the left menu.

2

In the Namespace list you'll see our existing namespaces. Click on Add with form to

create a new namespace.

In the Create a namespace form, set a Name for the namespace. You will also note that

we must set memory and CPU limits because we disabled over-commit earlier. Let's give

this namespace a memory limit of 2048 MB and a 2 CPU limit.

When you're ready, click the Create namespace button. The namespace will be created

and you'll be returned to the namespace list, where you'll see your new namespace listed.

Now we need to give our user access to the namespace. Click on Manage access for the

namespace we just created. Similar to the environment access management page, this

page lists who has access to the namespace (currently nobody but administrators).

Scroll up to the Create access section and select your user. You will note that the

environment access level for that user is displayed next to their username.

When you're ready, click Create access. The user will be given access to the namespace

and will appear in the Namespace access list.

Now let's make sure that all worked, and log in as the GitHub user.

CONTINUE

Testing access
Log out of Portainer (click the arrow next to your username in the top right and select Log

out) and log back in as the GitHub user by clicking Login with GitHub and providing the

credentials if necessary.

Once you're logged in, you will see you now have access to one environment - our

Kubernetes cluster. You'll also note that we don't have the full Administration menu

options on the left, as we are a standard user.

3

Select the environment and then select Namespaces in the left menu. In the list of

namespaces, you'll see only the namespace we just created.

CONTINUE

4

Summary
In this lesson, we:

In the next lesson we'll use this user to deploy an application on the Kubernetes cluster.

Gave our user access to the Kubernetes environment as the
Standard user role.

Created a namespace for our user and gave them access to it.

Logged in as our user and confirmed we only have access to what

we specified.

Our cluster is now configured and we have given our user access to it as a standard user.

Now let's deploy an application to the cluster.

In this lesson we will:

START

Lesson 10 of 11

James Carppe

Deploy an application

Deploy an application using GitOps.

Make a change to the application configuration in Git.

Confirm that our update has automatically applied.

1

Deploying an application with GitOps
There are a number of methods you can use to deploy an application on a Kubernetes

cluster. In this example, we'll demonstrate how you can use a Git repository containing a

YAML manifest to deploy an application through Portainer.

Before we start, we're going to fork an example repository that we have created for this

purpose. We want to create a fork as we are going to make changes to the repository

contents in the next step.

You can find the example repository at the following URL�

Go to the above repository in a web browser and click the Fork button.

https://github.com/portainerdemos/yachtops-demo

Choose from the list of owners to fork to (if you have access to multiple owners) and edit

the name of the repo if you so desire, then click Create fork.

Once the fork has been created you'll have a copy of the repo in your own GitHub

account. We'll deploy our application from there.

Back in Portainer, log in as your GitHub user and select your Kubernetes environment.

Next, click Applications in the left menu.

In the Applications list, you can see we have no applications currently deployed on the

cluster that this user can access. You can use the Namespace dropdown to filter the list

by namespace, or show all namespaces.

To create our application, click on the Create from code button.

On the Create from code page, ensure that Repository is selected and that the

namespace we created earlier is selected in Namespaces.

As we're deploying from a Git repository, we need to specify the details. This repository

is public, so we don't need to specify authentication. Provide the URL of your forked

repository in the Repository URL field. The Repository reference should automatically

populate, and enter deployment.yaml in the Manifest path field.

At the bottom of the form, toggle on GitOps updates. Here we can configure how

Portainer checks for updates to your deployment. Ensure Polling is selected as the

mechanism and set the Fetch interval to 1m.

When you're ready, click Deploy. Portainer will retrieve the manifest YAML from the Git

repository and deploy it on your environment. You should see it appear in the application

list, initially with a status indicating 0 of 1 replicas.

Once Kubernetes pulls the image and determines where to place it, this will update to 1

of 1 replicas. You can refresh the list with the refresh button in the top left.

CONTINUE

2

Making a change to the application
The application has deployed successfully to your cluster. But let's say we wanted to

make a change. With the way we've configured this application, all we need to do is

update the manifest in the Git repository and Portainer will automatically pick up the

change and update the deployment.

In your fork of the Git repository, make a change to the deployment.yaml file. You can

do this through the GitHub web interface by selecting the file and clicking on the pencil

icon.

For this example, let's imagine we wanted to increase the number of replicas of our

container to 2. On line 9 of the manifest file, change replicas: 1 to replicas: 2.

With this changed, click the Commit changes button and click Commit changes again in

the popup window.

Your changes will be committed to the repository.

When we created this application in Portainer, we set the polling interval for GitOps to

one minute. This means that every minute, Portainer will check the repository for any

changes. If it finds any, it will retrieve those changes and apply them to the application on

the cluster.

If you return to the Application list in Portainer once a minute has passed, you should

see the status has changed for the application:

If you click the name of the application then go to the Events tab, you can see the events

that occurred to update the replica count.

CONTINUE

Summary
In this lesson we:

3

Forked a Git repository containing an application manifest and

deployed the application from our forked repo to our Kubernetes

cluster.

Next we'll summarize everything we've covered in this course.

Made a change to the manifest in the Git repository.

Watched the change get automatically picked up by Portainer and

applied to the application on the cluster.

Through the lessons in this course, we have:

Lesson 11 of 11

James Carppe

Summary

Provisioned a management server and deployed Portainer Business
Edition.

Configured our Portainer server with external authentication via

GitHub OAuth.

Created an Omni account and service account, and configured
those credentials in Portainer.

Created three Talos droplets in Digital Ocean for our Kubernetes

cluster.

Created a three node Kubernetes cluster in Portainer via Omni.

Configured security settings on the cluster through OPA

Gatekeeper and set up resource quotas.

Upgraded the version of Kubernetes to the latest release.

Congratulations! You've managed to get a real, working Portainer and Kubernetes cluster

up and running with an application deployed in under two hours!

Configured Role-based Access Control for our GitHub user and

created a namespace for them to use.

Logged in as our GitHub user and deployed an application using
GitOps.

Made a change to the application manifest in the Git repository and

watched the application automatically update with the change.

